Các mô-đun 2-Verma và đồng điều hồn Khovanov–Rozansky

Mathematische Zeitschrift - Tập 299 - Trang 139-162 - 2021
Grégoire Naisse1, Pedro Vaz2
1Max Planck Institute for Mathematics, Bonn, Germany
2Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium

Tóm tắt

Chúng tôi giải thích cách mà cấu trúc của đa thức liên kết HOMFLY-PT do Queffelec–Sartori xây dựng có thể được diễn giải thông qua các mô-đun Verma parabol cho $${\mathfrak {gl}_{2n}}$$. Bằng cách nâng cấu trúc này lên thế giới phân loại, chúng tôi sử dụng các mô-đun 2-Verma parabol để đưa ra một cấu trúc lý thuyết đại diện cao hơn cho đồng điều hồn liên kết ba lần đánh số của Khovanov–Rozansky.

Từ khóa

#Mô-đun Verma parabol #Đa thức liên kết HOMFLY-PT #Lý thuyết đại diện #Đồng điều hồn Khovanov–Rozansky #Mô-đun 2-Verma parabol

Tài liệu tham khảo

Aparicio-Monforte, A., Kauers, M.: Formal Laurent series in several variables. Expo. Math. 31(4), 350–367 (2013) Brundan, J.: On the definition of Kac-Moody 2-category. Math. Ann. 364(1–2), 353–372 (2016) Cautis, S.: Clasp technology to knot homology via the affine Grassmannian. Math. Ann. 363, 1053–1115 (2015) Cautis, S., Kamnitzer, J., Morrison, S.: Webs and quantum skew Howe duality. Math. Ann. 360(1–2), 351–390 (2014) Dunfield, N., Gukov, S., Rasmussen, J.: The superpolynomial for knot homologies. Exp. Math. 15, 129–159 (2006) Elias, B., Khovanov, M.: Diagrammatics for Soergel categories. Int. J. Math. Math. Sci., 58 (2010) Humphreys, J.E.: Representations of semisimple Lie algebras in the BGG category \(\cal{O}\), Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence (2008) Jantzen, J.C.: Lectures on quantum groups, Graduate Studies in Mathematics, vol. 6. American Mathematical Society, Providence (1996) Khovanov, M.: Triply-graded link homology and Hochschild homology of Soergel bimodules. Int. J. Math. 18(8), 869–885 (2007) Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory 13, 309–347 (2009) Khovanov, M., Lauda, A.D.: A categorification of quantum \(sl(n)\). Quantum Topol. 1(1), 1–92 (2010) Khovanov, M., Rozansky, L.: Matrix factorizations and link homology. Fund. Math. 199(1), 1–91 (2008) Khovanov, M., Rozansky, L.: Matrix factorizations and link homology II. Geom. Topol. 12, 1387–1425 (2008) Lusztig, G.: Introduction to quantum groups. Birkhäuser/Springer, New York (2010) (Reprint of the 1994 edition) Mackaay, M., Sić, M.S., Vaz, P.: A diagrammatic categorification of the \(q\)-Schur algebra. Quantum Topol. 4, 1–75 (2013) Mackaay, M., Stošić, M., Vaz, P.: The 1,2-coloured HOMFLY-PT link homology. Trans. Am. Math. Soc. 363(4), 2091–2124 (2011) Mackaay, M., Yonezawa, Y.: \(\mathfrak{sl}_N\)-web categories and categorified skew Howe duality. J. Pure Appl. Algebra 223(5), 2173–2229 (2019) Mazorchuk, V.: Generalized Verma modules, Mathematical Studies Monograph Series, vol. 8. VNTL Publishers, L’viv (2000) Naisse, G.: Asymptotic Grothendieck groups and c.b.l.f. positive dg-algebras (2019). arXiv:1906.07215 Naisse, G., Vaz, P.: 2-Verma modules (2017). arXiv:1710.06293v2 Naisse, G., Vaz, P.: An approach to categorification of Verma modules. Proc. Lond. Math. Soc. (3) 117(6), 1181–1241 (2018) Naisse, G., Vaz, P.: On 2-Verma modules for quantum \({\mathfrak{sl}}_2\). Sel. Math. (N. S.) 24(4), 3763–3821 (2018) Queffelec, H., Rose, D.: The \(\mathfrak{sl}_n\) foam 2-category: a combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality. Adv. Math. 302, 1251–1339 (2016) Queffelec, H., Sartori, A.: HOMFLY-PT and Alexander polynomials from a doubled Schur algebra. Quantum Topol. 9(2), 323–347 (2018) Rasmussen, J.: Some differentials on Khovanov–Rozansky homology. Geom. Topol. 19(6), 3031–3104 (2015) Rouquier, R.: 2-Kac–Moody algebras (2008). arXiv:0812.5023v1 Tobias Barthel, J.M., Riehl, E.: Six model structures for DG-modules over DGAs: model category theory in homological action. N. Y. J. Math. 20, 1077–1159 (2014) Webster, B., Williamson, G.: A geometric construction of colored HOMFLYPT homology. Geom. Topol. 91(5), 2557–2600 (2017) Wedrich, P.: Exponential growth of colored HOMFLY-PT homology. Adv. Math. 353, 471–525 (2019) Wu, H.: Braids, transversal links and the Khovanov–Rozansky theory. Trans. Am. Math. Soc. 360, 3365–3389 (2008)