2-Local uniform isometries between complex Lipschitz algebras
Tóm tắt
Let (X, d) be a metric space and let $$\mathrm{Lip}(X,d) $$ denote the complex algebra of all complex-valued bounded functions f on X for which f is a Lipschitz function on $$\mathrm{(X,d)}$$. In this paper we give a complete description of all 2-local real and complex uniform isometries between $$\mathrm{Lip}(X,d) $$ and $$\mathrm{Lip(Y},\rho \mathrm{)}$$, where (X, d) and $$(Y,\rho )$$ are compact metric spaces. In particular, we show that every 2-local real (complex, respectively) uniform isometry from $$\mathrm{Lip}(X,d) $$ to $$\mathrm{Lip(Y,}\rho \mathrm{)}$$ is a surjective real (complex, respectively) linear uniform isometry.
Tài liệu tham khảo
Alimohammadi, D., Pazandeh, H.: 2-local isometries between Banach algebras of continuous functions with involution, Banach J. Math. Anal. (Accepted)
citation_journal_title=Banach J. Math. Anal.; citation_title=On a generalized Šemrl’s theorem for weak-2-local derivations on ; citation_author=JC Cabello, AM Peralta; citation_volume=11; citation_issue=2; citation_publication_date=2017; citation_pages=382-397; citation_doi=10.1215/17358787-0000009X; citation_id=CR2
citation_journal_title=Ann. Funct. Anal.; citation_title=2-local mapping on algebras with involution; citation_author=A Fošner; citation_volume=5; citation_issue=1; citation_publication_date=2014; citation_pages=63-69; citation_doi=10.15352/afa/1391614570; citation_id=CR3
citation_journal_title=Acta Sci. Math. (Sezeged); citation_title=2-local isometries of ; citation_author=M Györy; citation_volume=67; citation_publication_date=2001; citation_pages=735-746; citation_id=CR4
citation_journal_title=Int. Math. Forum; citation_title=2-local isometries and 2-local automorphisms on uniform algebras; citation_author=O Hatori, T Miura, H Oka, H Takagi; citation_volume=50; citation_issue=2; citation_publication_date=2007; citation_pages=2491-2502; citation_doi=10.12988/imf.2007.07219; citation_id=CR5
Hatori, O., Oi, S.: 2-local isometries on function spaces, Preprint.
arXiv:1812.10342v2
(2018)
citation_journal_title=Quaest. Math.; citation_title=Generalized 2-local isometries of spaces of continuously differentiable functions; citation_author=M Hosseini; citation_volume=40; citation_issue=8; citation_publication_date=2017; citation_pages=1003-1014; citation_doi=10.2989/16073606.2017.1344889; citation_id=CR7
citation_journal_title=Cent. Eur. J. Math.; citation_title=Real-linear isometries between certain subspaces of continuous functions; citation_author=A Jamshidi, F Sady; citation_volume=11; citation_issue=11; citation_publication_date=2013; citation_pages=2034-2043; citation_id=CR8
citation_journal_title=Houston J. Math. Bull.; citation_title=Into linear isometries between spaces of Lipschitz functions; citation_author=A Jiménez-Vargas, M Villegas-Vallecillos; citation_volume=34; citation_issue=4; citation_publication_date=2008; citation_pages=1165-1184; citation_id=CR9
citation_journal_title=Can. Math. Bull.; citation_title=2-Local isometries on spaces of Lipschitz functions; citation_author=A Jiménez-Vargas, M Villegas-Vallecillos; citation_volume=54; citation_publication_date=2011; citation_pages=680-692; citation_doi=10.4153/CMB-2011-025-5; citation_id=CR10
citation_journal_title=Publ. Mat.; citation_title=Weak-2-local isometries on uniform algebras and Lipschitz algebras; citation_author=L Li, AM Peralta, L Wang, Y-S Wang; citation_volume=63; citation_publication_date=2019; citation_pages=241-264; citation_doi=10.5565/PUBLMAT6311908; citation_id=CR11
citation_journal_title=C. R. Math. Acad. Sci. Paris; citation_title=Sur les transformations isométriques d’espaces vectoriels normés; citation_author=S Mazur, S Ulam; citation_volume=194; citation_publication_date=1932; citation_pages=946-948; citation_id=CR12
citation_journal_title=Proc. Edinb. Math. Soc.; citation_title=2-local isometries of some operator algebras; citation_author=L Molnár; citation_volume=45; citation_publication_date=2002; citation_pages=349-352; citation_doi=10.1017/S0013091500000043; citation_id=CR13
citation_journal_title=Sahand Commun. Math. Anal.; citation_title=Surjective real-linear uniform isometries between complex function algebras; citation_author=H Pazandeh, D Alimohammadi; citation_volume=13; citation_issue=1; citation_publication_date=2019; citation_pages=213-240; citation_id=CR14
citation_journal_title=Proc. Am. Math. Soc.; citation_title=Local automorphisms and derivations on B(H); citation_author=P Šemrl; citation_volume=125; citation_publication_date=1997; citation_pages=2677-2680; citation_doi=10.1090/S0002-9939-97-04073-2; citation_id=CR15
citation_journal_title=Can. Math. Bull.; citation_title=Isometries of noncompact Lipschitz spaces; citation_author=N Weaver; citation_volume=38; citation_issue=2; citation_publication_date=1995; citation_pages=242-249; citation_doi=10.4153/CMB-1995-035-3; citation_id=CR16
citation_title=Lipschitz Algebras; citation_publication_date=2018; citation_id=CR17; citation_author=N Weaver; citation_publisher=World Scientific