2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Allegretti, 2014, Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector, eLife, 3, e01963, 10.7554/eLife.01963
Amunts, 2014, Structure of the yeast mitochondrial large ribosomal subunit, Science, 343, 1485, 10.1126/science.1249410
Anderson, 2003, The process of structure-based drug design, Chemistry & Biology, 10, 787, 10.1016/j.chembiol.2003.09.002
Bai, 2013, Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles, eLife, 2, e00461, 10.7554/eLife.00461
Baker, 2010, Radiation damage in electron cryomicroscopy, Methods in Enzymology, 481, 371, 10.1016/S0076-6879(10)81015-8
Baker, 2010, The resolution dependence of optimal exposures in liquid nitrogen temperature electron cryomicroscopy of catalase crystals, Journal of Structural Biology, 169, 431, 10.1016/j.jsb.2009.11.014
Bartesaghi, 2014, Structure of beta-galactosidase at 3.2-A resolution obtained by cryo-electron microscopy, Proceedings of the National Academy of Sciences of USA, 111, 11709, 10.1073/pnas.1402809111
Brilot, 2012, Beam-induced motion of vitrified specimen on holey carbon film, Journal of Structural Biology, 177, 630, 10.1016/j.jsb.2012.02.003
Campbell, 2012, Movies of ice-embedded particles enhance resolution in electron cryo-microscopy, Structure, 20, 1823, 10.1016/j.str.2012.08.026
Campbell, 2014, Near-atomic resolution reconstructions using a mid-range electron microscope operated at 200kV, Journal of Structural Biology, 188, 183, 10.1016/j.jsb.2014.09.008
Cao, 2013, TRPV1 structures in distinct conformations reveal activation mechanisms, Nature, 504, 113, 10.1038/nature12823
Carugo, 1999, How many water molecules can be detected by protein crystallography?, Acta Crystallographica. Section D, Biological Crystallography, 55, 479, 10.1107/S0907444998012086
Chen, 2013, High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy, Ultramicroscopy, 135, 24, 10.1016/j.ultramic.2013.06.004
Chen, 2010, MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallographica. Section D, Biological Crystallography, 66, 12, 10.1107/S0907444909042073
DiMaio, 2015, Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement, Nature Methods, 10.1038/nmeth.3286
DiMaio, 2009, Refinement of protein structures into low-resolution density maps using rosetta, Journal of Molecular Biology, 392, 181, 10.1016/j.jmb.2009.07.008
DiMaio, 2013, Cryo-EM model validation using independent map reconstructions, Protein Science, 22, 865, 10.1002/pro.2267
Emsley, 2010, Features and development of Coot, Acta Crystallographica. Section D, Biological Crystallography, 66, 486, 10.1107/S0907444910007493
Fernandez, 2014, Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome, Cell, 157, 823, 10.1016/j.cell.2014.04.015
Forster, 2005, The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions, Molecular Cell, 18, 589, 10.1016/j.molcel.2005.04.016
Glaeser, 2011, Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM, Journal of Structural Biology, 174, 1, 10.1016/j.jsb.2010.12.005
Goddard, 2007, Visualizing density maps with UCSF Chimera, Journal of Structural Biology, 157, 281, 10.1016/j.jsb.2006.06.010
Kuhlbrandt, 2014, Biochemistry. The resolution revolution, Science, 343, 1443, 10.1126/science.1251652
Lander, 2009, Appion: an integrated, database-driven pipeline to facilitate EM image processing, Journal of Structural Biology, 166, 95, 10.1016/j.jsb.2009.01.002
Li, 2013, Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM, Nature Methods, 10, 584, 10.1038/nmeth.2472
Liao, 2013, Structure of the TRPV1 ion channel determined by electron cryo-microscopy, Nature, 504, 107, 10.1038/nature12822
Lowe, 1995, Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution, Science, 268, 533, 10.1126/science.7725097
Lu, 2014, Three-dimensional structure of human gamma-secretase, Nature, 512, 166, 10.1038/nature13567
Lyumkis, 2013, Likelihood-based classification of cryo-EM images using FREALIGN, Journal of Structural Biology, 183, 377, 10.1016/j.jsb.2013.07.005
McMullan, 2014, Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy, Ultramicroscopy, 147, 156, 10.1016/j.ultramic.2014.08.002
Mindell, 2003, Accurate determination of local defocus and specimen tilt in electron microscopy, Journal of Structural Biology, 142, 334, 10.1016/S1047-8477(03)00069-8
Rabl, 2008, Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases, Molecular Cell, 30, 360, 10.1016/j.molcel.2008.03.004
Roseman, 2004, FindEM–a fast, efficient program for automatic selection of particles from electron micrographs, Journal of Structural Biology, 145, 91, 10.1016/j.jsb.2003.11.007
Rosenthal, 2003, Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy, Journal of Molecular Biology, 333, 721, 10.1016/j.jmb.2003.07.013
Ruskin, 2013, Quantitative characterization of electron detectors for transmission electron microscopy, Journal of Structural Biology, 184, 385, 10.1016/j.jsb.2013.10.016
Scheres, 2012a, A Bayesian view on cryo-EM structure determination, Journal of Molecular Biology, 415, 406, 10.1016/j.jmb.2011.11.010
Scheres, 2014, Beam-induced motion correction for sub-megadalton cryo-EM particles, eLife, 3, e03665, 10.7554/eLife.03665
Scheres, 2012b, RELION: implementation of a Bayesian approach to cryo-EM structure determination, Journal of Structural Biology, 180, 519, 10.1016/j.jsb.2012.09.006
Scheres, 2012, Prevention of overfitting in cryo-EM structure determination, Nature Methods, 9, 853, 10.1038/nmeth.2115
Scheres, 2007, Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization, Nature Methods, 4, 27, 10.1038/nmeth992
Shigematsu, 2013, Noise models and cryo-EM drift correction with a direct-electron camera, Ultramicroscopy, 131, 61, 10.1016/j.ultramic.2013.04.001
Sorzano, 2010, A clustering approach to multireference alignment of single-particle projections in electron microscopy, Journal of Structural Biology, 171, 197, 10.1016/j.jsb.2010.03.011
Suloway, 2005, Automated molecular microscopy: the new Leginon system, Journal of Structural Biology, 151, 41, 10.1016/j.jsb.2005.03.010
Voorhees, 2014, Structure of the Mammalian ribosome-sec61 complex to 3.4 a resolution, Cell, 157, 1632, 10.1016/j.cell.2014.05.024
Wang, 2015, De novo protein structure determination from near-atomic-resolution cryo-EM maps, Nature Methods, 10.1038/nmeth.3287
Wong, 2014, Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine, eLife, 3, e03080, 10.7554/eLife.03080
Yu, 2010, Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions, The EMBO Journal, 29, 692, 10.1038/emboj.2009.382