2–10 µm Mid‐Infrared Fiber‐Based Supercontinuum Laser Source: Experiment and Simulation

Laser and Photonics Reviews - Tập 14 Số 6 - 2020
Sébastien Venck1, François St‐Hilaire2,3, Laurent Brilland1, Amar Nath Ghosh3, Radwan Chahal1, Céline Caillaud1, Marcello Meneghetti4, Johann Trolès4, Franck Joulain5, Solenn Cozic5, Samuel Poulain5, Guillaume Huss6, Martin Rochette2, John M. Dudley3, Thibaut Sylvestre3
1SelenOptics Campus Beaulieu Rennes 35000 France
2Department of Electrical and Computer Engineering McGill University Montréal H3A 0E9 Canada
3Institut FEMTO‐ST, CNRS UMR 6174 Université Bourgogne Franche‐Comté Besançon 25030 France
4Université de Rennes CNRS, ISCR‐UMR 6226 Rennes 35000 France
5Le Verre Fluoré Campus Kerlann Bruz 35170 France
6LEUKOS 37 rue Henri Giffard Limoges 87280 France

Tóm tắt

AbstractMid‐infrared supercontinuum (mid‐IR SC) sources in the 2–20 µm molecular fingerprint region are in high demand for a wide range of applications including optical coherence tomography, remote sensing, molecular spectroscopy, and hyperspectral imaging. Herein, mid‐IR SC generation is investigated in a cascaded silica‐ZBLAN‐chalcogenide fiber system directly pumped with a commercially available pulsed fiber laser operating in the telecommunications window at 1.55 µm. This fiber‐based system is shown to generate a flat broadband mid‐IR SC covering the entire range from 2 to 10 µm with several tens of mW of output power. This technique paves the way for low cost, practical, and robust broadband SC sources in the mid‐IR without the requirement of mid‐infrared pump sources or Thulium‐doped fiber amplifiers. A fully realistic numerical model used to simulate the nonlinear pulse propagation through the cascaded fiber system is also described and the numerical results are used to discuss the physical processes underlying the spectral broadening in the cascaded system. Finally, recommendations are provided for optimizing the current cascaded system based on the simulation results.

Từ khóa


Tài liệu tham khảo

10.1007/978-1-4939-3326-6

10.1017/CBO9780511750465

10.1038/nphoton.2014.213

10.1364/OL.40.001081

10.1364/OL.41.002117

10.1364/OE.23.003282

10.1364/JOSAB.36.00A183

10.1364/OE.25.015336

10.3390/app8050707

10.1364/JOSAB.35.002311

10.1364/OPTICA.2.000292

10.1038/s41377-019-0122-5

10.1364/OE.26.033428

10.1364/OE.15.011385

10.1063/1.4985263

10.1016/j.infrared.2018.04.008

Seddon A. B., 2016, Deep Imaging in Tissue and Biomedical Media, 231

10.1364/OL.43.000999

Désévédavy F., 2017, Supercontinuum Generation in Tellurite Optical Fibers, 10.1007/978-3-319-53038-3_12

10.1364/OME.3.001049

10.1002/lpor.201700005

10.1364/OL.31.002553

10.1109/JPHOT.2017.2690340

10.1364/JOSAB.29.000635

10.1109/LPT.2005.860390

10.1364/OE.15.000865

10.1364/OPTICA.4.001163

10.1364/OE.26.013952

10.1364/OL.43.000296

10.1109/JLT.2019.2918532

10.1364/OE.22.003959

10.1364/OE.24.000749

Petersen C. R., 2016, Proc. SPIE 9703, Optical Biopsy XIV: Toward Real‐Time Spectroscopic Imaging and Diagnosis, 97030A

10.1364/OL.41.004605

10.1088/1674-1056/28/8/084209

NORBLIS homepage http://norblis.com/(accessed: March 2020).

10.1103/RevModPhys.78.1135

Agrawal G. P., 2007, Nonlinear Fiber Optics

10.1109/JLT.2003.808628

10.1007/s00340-005-1844-z

ZFG singlemode https://leverrefluore.com/products/passive‐fibers/zfg‐singlemode/(accessed: March 2020).

Fluoride fiber technology https://www.fiberlabs.com/glossary/technology/(accessed: March 2020).

10.1364/JOSAB.35.002828

10.1364/JOSAB.36.00A161

10.1364/OE.18.009107

10.1364/OL.25.000254

10.1364/AO.54.002072

10.1364/OE.380737

10.1364/OL.44.005505

10.1364/OL.41.000946

10.1364/PRJ.4.000135

10.1364/OME.6.000971

10.1364/OE.27.024499

10.1088/2515-7647/ab3b1e