16‐year simulation of Arctic black carbon: Transport, source contribution, and sensitivity analysis on deposition

Journal of Geophysical Research D: Atmospheres - Tập 118 Số 2 - Trang 943-964 - 2013
Sangeeta Sharma1, Misa Ishizawa2, Douglas Chan1, D. Lavoué3, Elisabeth Andrews4, Konstantinos Eleftheriadis5, Shamil Maksyutov6
1Climate Research Division, S&T Branch, Environment Canada, Toronto,#N#Ontario, Canada
2Toronto, Ontario, Canada
3DL Modelling and Research Brampton Ontario Canada
4CIRES, University of Colorado, Boulder, Colorado, USA
5ERL, Demokritos National Center of Scientific Research Institute of Nuclear Technology and Radiation Protection Attiki Greece
6Center for Global Environmental Research, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki, Japan

Tóm tắt

Arctic regional climate is influenced by the radiative impact of aerosol black carbon (BC) both in the atmosphere and deposited on the snow and ice covered surfaces. The NIES (National Institute for Environmental Studies) global atmospheric transport model was used, with BC emissions from mid‐latitude fossil fuel and biomass burning source regions, to simulate BC concentrations with 16 year period. The model‐simulated BC agreed well with the BC observations, including the trends and seasonality, at three Arctic sites: Alert (Nunavut, Canada), Barrow (Alaska, USA), and Zepplin, Ny‐Ålesund (Svalbard, Norway). The equivalent black carbon (EBC, absorption inferred BC) observations at the three Arctic locations showed an overall decline of 40% from 1990 to 2009; with most change occurring during early 1990s. Model simulations confirmed declining influence on near surface BC contribution by 70% , and atmospheric BC burden by one half from the Former Soviet Union (FSU) BC source region over 16 years. In contrast, the BC contribution from the East Asia (EA) region has little influence at the surface but atmospheric Arctic BC burden increased by 3 folds. Modelled dry deposition is dominant in the Arctic during wintertime, while wet deposition prevails at all latitudes during summer. Sensitivity analyses on the dry and wet deposition schemes indicate that parameterizations need to be refined to improve on the model performance. There are limitations in the model due to simplified parameterizations and remaining model uncertainties, which requires further exploration of source region contributions, especially from growing EA source region to Arctic BC levels in the future is warranted.

Từ khóa


Tài liệu tham khảo

10.1080/027868290901972

Baron R. E. W. D.Montgomery andS. D.Tuladhar(2009) An Analysis of Black Carbon Mitigation as a Response to Climate Change 31 pp. Copenhagen Consensus Center.

10.1016/0004‐6981(86)90180‐0

10.1007/s007030170009

10.1016/0004-6981(89)90249-7

10.1029/2006GB002840

10.1029/2003JD003697

10.1029/2010jd015096

10.5194/acp‐11‐2423‐2011

10.1029/2007JD009443

10.1029/2001JD001397

10.1016/0004-6981(85)90113-1

10.1016/j.atmosenv.2007.07.010

10.1029/1999JD900187

10.5194/acp-10-1511-2010

10.5194/acp‐9‐4653‐2009

10.5194/acp‐5‐1931‐2005

10.1016/0004-6981(87)90083-7

10.1016/0004-6981(85)90115-5

10.5194/acp-6-4321-2006

10.1029/2008GL035741

10.1016/j.atmosenv.2011.08.030

10.1029/2006JD008003

Forster P. M., 2007, Changes in Atmospheric Constituents and in Radiative Forcing

10.1029/2004JD005350

10.1034/j.1600‐0889.2003.00044

10.1029/2011GL048221

10.1029/2009JD012943

10.1073/pnas.2237157100

10.1016/0048-9697(84)90265-1

10.1111/j.1600-0889.2011.00577.x

10.1021/es803623f

10.5194/acp-10-669-2010

10.1029/1999GL900155

10.1029/2009JD013478

10.1029/2009JD013592

10.5194/acp‐10‐5065‐2010

10.1111/j.1600‐0889.2006.00219

10.5194/acp‐10‐5191‐2010

10.5194/acp-8-1195-2008

10.1175/1520‐0477(1996)077

10.1029/2007JD009756

10.1029/2002JD002199

10.1029/2004JD005296

10.5194/acp‐9‐9001‐2009

10.1029/2001JD900038

Koerner Roy M., 1999, 100 year record of ion chemistry from Agassiz Ice Cap Northern Ellesmere Island NWT, Canada, Atmos, Environ, 33, 347

10.5194/acpd‐10‐4963‐2010

Lavoué D. T.L.Zhao S.L.Gong P.Huang S.Sharma andB.J.Stocks(2009) Interannual variability of carbonaceous particles from boreal wildland fires and their contributions to aerosol loading and deposition in the Arctic American Geophysical Union (AGU) Fall Meeting San Francisco CA December 14‐18.

Lavoué D.(2000) Transport vers la région arctique de l'aérosol carboné par les feux de biomasse des régions boréales et tempérées Ph.D. thesis (in French) Laboratoire des Sciences du Climat et de l'Environnement CNRS/CEA Gif‐sur‐Yvette France p 270.

10.1029/2000JD900180

10.1126/science.1137695

10.1029/95JD03426

10.1029/2010jd015145

Maksyutov S., 2000, CGER supercomputer activity report CGER I039‐2000, edited by CGER NIES, 39

10.1029/2010JD015067

10.1029/2004GB002259

10.1038/nclimate1332

10.5194/gmdd-3-1317-2010

10.1111/j.1600‐0889.2006.00238

Raatz W.E., 1991, Pollution of the Arctic atmosphere, 13

Rahn K. A., 1981, Arctic air chemistry, Atmos. Environ., 1, 1345

10.5194/acp‐4‐1885‐2004

10.1029/2005JD006581

10.1029/2003JD004331

10.1029/2002JD002496

10.5194/acp‐8‐5353‐2008

10.5194/acp‐10‐9667‐2010

10.5194/acp-7-511-2007

10.1029/2006JD007216

10.1029/2009JD013605

10.1016/j.pce.2003.08.058

10.5194/acp‐6‐1777‐2006

10.5194/acp‐7‐4489‐2007

United Nations(2007) The United Nations energy statistics database (2005) 5 pp United Nations Statistics Division New York.

UNEP2011–Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decision Makers Nairobi Kenya UNEP/GC/26/INF/20ISBN: 978‐92‐807‐3142‐2.

10.5194/acp-6-3423-2006

Van der Werf, 2010, Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10

10.5194/acp‐10‐2595‐2010

10.1029/2003JD004084

10.1007/s00376‐011‐0117‐5

10.1029/2008gl036194

10.1038/313467a0

10.1029/2008JD011239