<sup>13</sup>C shielding tensors of crystalline amino acids and peptides: Theoretical predictions based on periodic structure models

Journal of Computational Chemistry - Tập 30 Số 2 - Trang 222-235 - 2009
Anmin Zheng1, Shang-Bin Liu, Feng Deng
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China

Tóm tắt

AbstractPrecise theoretical predictions of NMR parameters are helpful for the spectroscopic identification of complicated biological molecules, especially for the carbon shielding tensors in amino acids. The 13C shielding tensors of various crystalline amino acids and peptides have been calculated using the gauge‐including projector augmented wave (GIPAW) method based on two different periodic structure models, namely that deduced from available crystallographic data and that from theoretically optimized structures. The incorporation of surrounding lattice effects is found to be crucial in obtaining reliable predictions of 13C shielding tensors that are comparable to the experimental data. This is accomplished by refining the experimental crystallographic data of the amino acids and peptides at the GGA/PBE level by which more accurate intramolecular CH bond lengths and intermolecular hydrogen‐bonding interactions are obtained. Accordingly, more accurate predictions of 13C shielding tensors comparable to the experimental results (within a maximum deviation of ±10 ppm) were achieved, rendering more explicit 13C shielding tensors assignments for solid biological systems particularly for amino acids with multiple carboxyl carbons, such as asparagine, glutamine, and glutamic acid. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009

Từ khóa


Tài liệu tham khảo

10.1002/1521-3773(20020902)41:17<3096::AID-ANIE3096>3.0.CO;2-X

10.1016/S0009-2614(97)00757-4

10.1002/jcc.20641

10.1016/0009-2614(96)00906-2

10.1016/S0009-2614(99)01429-3

10.1002/jcc.20708

Jameson C. J., 1998, 44

10.1063/1.2353830

10.1063/1.1689633

10.1063/1.2805389

10.1002/mrc.1260310802

10.1002/mrc.1260330902

10.1002/(SICI)1097-458X(199709)35:9<606::AID-OMR124>3.0.CO;2-#

Zheng G., 1997, Chin J Magn Reson, 14, 419

10.1021/ja011863a

10.1021/ja010145l

10.1002/jcc.10012

10.1021/ja029840z

10.1002/1096-987X(200102)22:3<366::AID-JCC1008>3.0.CO;2-F

10.1021/jp0007538

10.1002/jcc.20388

10.1016/S0076-6879(02)38214-4

10.1016/j.theochem.2004.05.027

10.1016/S0009-2614(03)00254-9

10.1021/jp049362

10.1021/jp0350114

10.1016/j.cplett.2004.09.155

10.1021/jp027279l

10.1103/PhysRevB.63.245101

10.1103/PhysRevLett.91.196401

Umari P., 2004, Phys Rev B, 69, 235102, 10.1103/PhysRevB.69.235102

Frisch M. J., 2003, Gaussian03, Revision B. 05

10.1021/ja027124r

10.1039/B513392K

10.1002/mrc.1779

10.1039/b500674k

10.1039/B618211A

Miguel A. L. M., 2006, Phys Rev B, 73, 125433, 10.1103/PhysRevB.73.125433

10.1021/jp0513925

10.1103/PhysRevLett.77.3865

10.1103/PhysRevB.41.7892

10.1103/PhysRevB.13.5188

10.1088/0953-8984/14/11/301

10.1021/ja049879z

Strohmeier M., 2003, J Am Chem Soc, 126, 966, 10.1021/ja037330e

10.1021/ja00096a039

10.1006/jmre.2002.2505

10.1146/annurev.physchem.47.1.135

10.1021/jp0750699