Ehrlichia SLiM Ligand Mimetic Activates Notch Signaling in Human Monocytes

mBio - Tập 13 Số 2 - 2022
LaNisha L. Patterson1, Thangam S. Velayutham1, Caitlan D. Byerly1, Duc‐Cuong Bui1, Jignesh Patel1, Veljko Veljković2, Slobodan Paessler1, Jere W. McBride3,1,4,5,6
1Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
2Biomed Protection, LLC, Galveston, Texas, USA
3Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
4Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
5Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
6Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA

Tóm tắt

E. chaffeensis infects and replicates in mononuclear phagocytes, but how it evades innate immune defenses of this indispensable primary innate immune cell is not well understood. This investigation revealed the molecular details of a ligand mimicry cellular reprogramming strategy that involved a short linear motif (SLiM), which enabled E. chaffeensis to exploit host cell signaling to establish and maintain infection. E. chaffeensis TRP120 is a moonlighting effector that has been associated with cellular activation and other functions, including ubiquitin ligase activity.

Từ khóa


Tài liệu tham khảo

10.1016/j.ttbdis.2016.09.017

10.1371/journal.ppat.1008541

10.1128/mSphere.00216-21

10.1128/IAI.01289-15

10.1128/IAI.00690-17

10.1128/mBio.00672-16

10.1128/IAI.00290-17

10.1128/IAI.05608-11

10.1371/journal.pone.0194891

10.1128/IAI.05422-11

10.1128/IAI.00845-17

10.1093/femspd/ftab026

10.1073/pnas.040576497

10.1038/labinvest.2017.60

10.1182/blood-2005-01-0355

10.1126/science.284.5415.770

10.1074/jbc.M110.138966

10.1189/jlb.0303089

10.1080/15548627.2016.1268303

10.1038/cmi.2013.22

10.1002/(SICI)1097-4652(199912)181:3%3C393::AID-JCP3%3E3.0.CO;2-6

10.1016/j.semcdb.2012.01.009

10.1038/onc.2008.229

10.1039/c1mb05212h

10.1093/nar/gkz1030

10.1021/cr400585q

10.1039/c1mb05231d

10.1128/IAI.01984-14

10.1016/j.tibs.2010.10.002

10.1016/j.tibs.2014.11.001

10.3390/microorganisms8071006

10.1016/j.chom.2013.05.005

10.1128/mBio.01201-20

10.1371/journal.ppat.1000704

10.1016/j.sbi.2015.03.004

10.1016/j.micinf.2013.09.011

10.1126/science.aaf9739

10.1074/jbc.M112.428854

10.3390/ijms10062763

10.1074/jbc.M113.454850

10.1042/BJ20150010

10.1038/nsmb.1457

10.1016/j.biocel.2011.08.005

10.1074/jbc.M803650200

10.1016/s0092-8674(03)00810-9

10.1006/mpat.1999.0327

10.1111/j.1462-5822.2006.00871.x

10.1128/IAI.00913-09

10.1111/j.1462-5822.2010.01531.x

10.3389/fmicb.2011.00208

10.1093/protein/gzh024

10.1006/dbio.1997.8564

10.1007/s00441-019-03130-7

10.1016/j.devcel.2018.01.020

10.1093/genetics/152.2.567

10.1016/j.str.2004.09.012

10.3390/molecules25051030

10.1128/CVI.00048-09

10.12688/f1000research.22149.4

10.1016/j.ymeth.2014.08.004

10.1128/IAI.74.1.711-720.2006

10.1128/IAI.01466-07