Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia
Tài liệu tham khảo
10.1016/0076-6879(88)60104-2
10.1016/S1360-1385(96)80050-1
10.1007/978-1-4615-9412-3_6
10.1007/BF00129082
10.1038/35041539
10.1016/S1360-1385(02)02335-X
10.1093/pcp/pcf164
10.1007/s002530100710
10.1016/S0923-2508(02)01316-5
10.1016/S1369-5266(02)00306-0
Bidlack J. Malone M. Benson R. (1992) Molecular structure and component integration of secondary cell walls in plants. Proc. Okla. Acad. Sci. 72, 51–56.
10.1046/j.1365-313X.1993.00999.x
10.1016/S0966-842X(97)01159-1
10.1042/BJ20021784
10.1007/PL00000931
10.1080/01490458709385972
10.1146/annurev.mi.49.100195.002151
10.1016/S0065-2911(08)60015-6
10.1146/annurev.energy.21.1.403
10.1007/s002530100624
Guedon P.E. Petitdemange E. Saint-Joly C. Young M. (2000) La dégradation de la cellulose. Biofuture 2000, 32–35.
Ward O.P. Singh A. (2002) Bioethanol technology: developments and perspectives. Adv. Appl. Microbiol. 51, 53–80.
10.1080/10408419891294181
10.1007/BF00172634
Cailliez C. Benoit L. Gelhaye E. Petitdemange H. Raval G. (1993) Solubilization of cellulose by mesophilic cellulolytic clostridia isolated from a municipal solid-waste digester. Bioresour. Technol. 43, 77–83.
10.1007/BF01570968
Petitdemange, E., Fond, O., Raval, G., Petitdemange, H., Gay, R. (1984) Screening of cellulolytic anaerobic bacteria, co-fermentations with methanic and acetobutylic fermentation. Part one: Fermentation of cellulose by a co-culture of Clostridium cellulolyticum and Clostridium acetobutylicum. In: Anaerobic Digestion and Carbohydrate Hydrolysis of Wastes (Ferrero, G.L., Ferranti, M.P., Naveau, H., Eds.), pp.223–234 Elsevier Applied Science Publishers, London.
10.1099/00207713-34-2-155
10.1128/MMBR.66.3.506-577.2002
Lamed R. Setter E. Bayer E.A. (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum . J. Bacteriol. 156, 828–836.
Desvaux, M. (2001) La fermentation de la cellulose par Clostridium cellulolyticum: Métabolisme modèle d'un Clostridium cellulolytique mésophile. Université Henri Poincaré-Nancy I, Nancy, France.
Garrity, G.M. (2001) Bergey's Manual of Systematic Bacteriology. Springer, Berlin, Heidelberg, New York.
10.1111/j.1574-6968.1993.tb06501.x
10.1099/00207713-44-4-812
10.1016/S0959-440X(98)80143-7
Kakiuchi M. Isui A. Suzuki K. Fujino T. Fujino E. Kimura T. Karita S. Sakka K. Ohmiya K. (1998) Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J. Bacteriol. 180, 4303–4308.
10.1099/00207713-51-3-1127
10.1016/S0168-1656(97)00085-0
10.1111/j.1574-6968.2002.tb11450.x
10.1128/JB.185.3.714-725.2003
10.1128/JB.182.20.5906-5910.2000
10.1016/S0966-842X(99)01533-4
10.1128/JB.185.20.5907-5914.2003
10.1128/JB.185.16.4727-4733.2003
10.1111/j.1574-6968.1998.tb12950.x
Pagès S. Bélaı?ch A. Fierobe H.P. Tardif C. Gaudin C. Bélaı?ch J.P. (1999) Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. J. Bacteriol. 181, 1801–1810.
10.1006/jmbi.2000.4191
10.1107/S0907444900012889
10.1006/jmbi.2000.4192
10.1006/jsbi.1998.4065
10.1128/jb.184.4.884-888.2002
10.1128/JB.183.16.4823-4838.2001
Navarre W.W. Schneewind O. (1999) Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall enveloppe. Microbiol. Mol. Biol. Rev. 63, 174–229.
10.1016/S0966-842X(01)01956-4
10.3109/10409239609106584
Madarro A. Perra J.L. Lequerica J.L. Valles S. Gay R. Flors A. (1991) Partial purification and characterization of the cellulases from Clostridium cellulolyticum H10. J. Chem. Technol. Biotechnol. 52, 393–406.
Gal L. Pagès S. Gaudin C. Bélaı?ch A. Reverbel-Leroy C. Tardif C. Bélaı?ch J.P. (1997) Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum . Appl. Environ. Microbiol. 63, 903–909.
Bayer E.A. Lamed R. (1986) Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J. Bacteriol. 167, 828–836.
10.3109/10520299809140514
10.1073/pnas.1936124100
10.1139/cjm-45-3-242
10.1128/JB.185.10.3042-3048.2003
Mohand-Oussaid O. Payot S. Guedon E. Gelhaye E. Youyou A. Petitdemange H. (1999) The extracellular xylan degradative system in Clostridium cellulolyticum cultivated on xylan: evidence for cell-free cellulosome production. J. Bacteriol. 181, 4035–4040.
Lamed, R., Bayer, E.A. (1988) The cellulosome concept: exocellular/extracellular enzyme reactor centers for efficient binding and cellulolysis. In: Biochemistry and Genetics of Cellulose Degradation (Aubert, J.P., Béguin, P., Millet, J., Eds.), pp.101–106 Academic Press, London.
10.1016/S0969-2126(01)00220-9
10.1016/S0959-440X(97)80072-3
10.1016/S0959-440X(00)00253-0
10.1007/BF01569558
10.1016/0378-1119(89)90137-6
10.1007/BF00167140
Fierobe H.P. Bagnara-Tardif C. Gaudin C. Guerlesquin F. Sauve P. Bélaı?ch A. Bélaı?ch J.P. (1993) Purification and characterization of endoglucanase C from Clostridium cellulolyticum. Catalytic comparison with endoglucanase A . Eur. J. Biochem. 217, 557–565.
Reverbel-Leroy C. Pagès S. Bélaı?ch A. Bélaı?ch J.P. Tardif C. (1997) The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J. Bacteriol. 179, 46–52.
Gal L. Gaudin C. Bélaı?ch A. Pagès S. Tardif C. Bélaı?ch J.P. (1997) CelG from Clostridium cellulolyticum: a multidomain endoglucanase acting efficiently on crystalline cellulose. J. Bacteriol. 179, 6595–6601.
10.1128/JB.182.7.1910-1915.2000
10.1128/JB.184.5.1378-1384.2002
10.1016/S0969-2126(01)00228-3
10.1021/bi001139p
10.1128/JB.185.14.4127-4135.2003
10.1021/bi025816m
Mosbah A. Tardif C. Bornet O. Valette O. Henrissat B. Darbon H. (2002) Assignment of the 1H, 13C, and 15N resonances of the 22,5 kDa CBM28 module of the cellulase Cel5I of Clostridium cellulolyticum . J. Biomol. NMR 23, 157–158.
10.1016/0378-1119(91)90461-J
10.1093/emboj/17.19.5551
Pohlschröder M. Canale-Parola E. Leschine S.B. (1995) Ultrastructure diversity of the cellulase complexes of Clostridium papyrosolvens C7. J. Bacteriol. 177, 6625–6629.
10.1016/S1065-6995(03)00166-5
10.1093/protein/6.8.947
10.1002/(SICI)1097-0134(199712)29:4<517::AID-PROT11>3.0.CO;2-P
10.1016/0014-5793(95)00074-J
Gerwig G.J. Kamerling J.P. Vliegenthart J.F. Morag E. Lamed R. Bayer E.A. (1993) The nature of the carbohydrate-peptide linkage region in glycoproteins from the cellulosomes of Clostridium thermocellum and Bacteroides cellulosolvens . J. Biol. Chem. 268, 26956–26960.
Gehin A. Petitdemange H. (1995) The effects of tunicamycin on secretion, adhesion and activities of the cellulase complex of Clostridium cellulolyticum, ATCC 35319. Res. Microbiol. 146, 251–262.
10.1099/00207713-34-2-155
Saxena S. Fierobe H.P. Gaudin C. Guerlesquin F. Bélaı?ch J.P. (1995) Biochemical properties of a β-xylosidase from Clostridium cellulolyticum . Appl. Environ. Microbiol. 61, 3509–3512.
10.1099/00221287-144-2-375
Guedon E. Payot S. Desvaux M. Petitdemange H. (1999) Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J. Bacteriol. 181, 3262–3269.
10.3168/jds.S0022-0302(01)70159-2
Strobel H.J. Caldwell F.C. Dwason K.A. (1995) Carbohydrate transport by the anaerobic thermophile Clostridium thermocellum LQRI. Appl. Environ. Microbiol. 61, 4012–4015.
Mitchell W.J. (1992) Carbohydrate assimilation by saccharolytic clostridia. Res. Microbiol. 143, 245–250.
Giallo J. Gaudin C. Bélaı?ch J.P. Petitdemange E. Caillet-Mangin F. (1983) Metabolism of glucose and cellobiose by cellulolytic mesophilic Clostridium sp. strain H10. Appl. Environ. Microbiol. 45, 843–849.
Desvaux M. Guedon E. Petitdemange H. (2001) Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. Microbiology 147, 1461–1471.
Giallo J. Gaudin C. Bélaı?ch J.P. (1985) Metabolism and solubilization of cellulose by Clostridium cellulolyticum H10. Appl. Environ. Microbiol. 49, 1216–1221.
10.1146/annurev.mi.47.100193.004231
Koch A.L. (1997) Microbial physiology and ecology of slow growth. Microbiol. Mol. Biol. Rev. 61, 305–318.
10.1111/j.1574-6968.1990.tb04084.x
10.1146/annurev.mi.03.100149.002103
Monod J. (1950) La technique de la culture conitnue: théories et aplications. Ann. Inst. Pasteur 79, 390–410.
Zeng, A.P. (1999) Continuous culture. In: Manual of Industrial Microbiology and Biotechnology (Demain, A.L., Davies, J.E., Eds.), pp.151–164 American Society for Microbiology, Washington DC.
Llesuy S. Lissi E.A. (1996) The steady-state hypothesis in complex biological systems. Biochem. Edu. 24, 102–105.
Bayer E.A. Kenig R. Lamed R. (1983) Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 156, 818–827.
Gelhaye E. Petitdemange H. Gay R. (1992) Characteristics of cellulose colonization by a mesophilic cellulolytic Clostridium strain C401. Res. Microbiol. 143, 891–895.
Gelhaye E. Petitdemange H. Gay R. (1993) Adhesion and growth rate of Clostridium cellulolyticum ATCC 35319 on crystalline cellulose. J. Bacteriol. 175, 3452–3458.
10.1007/BF01577226
Gelhaye E. Benoit L. Petitdemange H. Gay R. (1993) Adhesive properties of five mesophilic cellulolytic clostridia isolated from the same biotope. FEMS Microbiol. Ecol. 102, 67–73.
Gelhaye E. Gehin A. Petitdemange H. (1993) Colonization of crystalline cellulose by Clostridium cellulolyticum ATCC 35319. Appl. Environ. Microbiol. 59, 3154–3156.
Gehin A. Gelhaye E. Raval G. Petitdemange H. (1995) Clostridium cellulolyticum viability and sporulation under cellobiose starvation conditions. Appl. Environ. Microbiol. 61, 868–871.
Gehin A. Gelhaye E. Petitdemange H. (1996) Adhesion of Clostridium cellulolyticum spores to filter paper. J. Appl. Bacteriol. 80, 187–190.
10.1146/annurev.genet.30.1.297
Errington J. (1993) Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 57, 1–33.
10.1111/j.1574-6976.1995.tb00216.x
Desvaux M. Petitdemange H. (2002) Sporulation of Clostridium cellulolyticum while grown in cellulose-batch and cellulose-fed continuous cultures on a mineral-salt based medium. Microb. Ecol. 43, 271–279.
10.1073/pnas.022493799
10.1073/pnas.0335853100
10.1007/s002530051577
Van Loosdrecht M.C.M. Lyklema J. Norde W. Zehnder A.J.B. (1990) Influence of interfaces on microbial activity. Microbiol. Rev. 54, 75–87.
10.1146/annurev.mi.49.100195.003431
Jirku V. (1997) Changes in the starvation response through covalent cell attachment. Antonie Leeuwenhoek 71, 369–373.
Russell J.B. Bond D.R. Cook G.M. (1996) The fructose diphospate/phosphate regulation of carbohydrate metabolism in low G + C Gram-positive anaerobes. Res. Microbiol. 147, 528–534.
Kovarova-Kovar K. Egli T. (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol. Mol. Biol. Rev. 62, 646–666.
10.1016/S1369-5274(00)00141-7
10.1007/s00018-002-8431-9
Jones D.T. Woods D.R. (1986) Acetone-butanol fermentation revisited. Microbiol. Rev. 50, 484–524.
Tchunden J. Petitdemange E. Raval G. Petitdemange H. Gay R. (1992) Improved cellulase production by stable Clostridium cellulolyticum mutants. Biomass Bioenergy 3, 449–452.
Petitdemange E. Tchunden T. Valles S. Pirson H. Raval G. Gay R. (1992) Effect of carbon sources on cellulase production by Clostridium cellulolyticum . Biomass Bioenergy 3, 393–402.
10.1128/AEM.66.6.2461-2470.2000
Stewart C.S. (1977) Factors affecting the cellulolytic activity of rumen contents. Appl. Environ. Microbiol. 33, 497–502.
Russell J.B. Dombrowski D.B. (1980) Effect of pH on efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol. 39, 604–610.
Russell J.B. Diez-Gonzalez F. (1998) The effect of fermentation acids on bacterial metabolism. Adv. Microb. Physiol. 39, 205–234.
10.3168/jds.S0022-0302(96)76510-4
Mourino F. Akkarawongsa R. Weimer P.J. (2001) Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. J. Dairy Sci. 84, 848–859.
Huang L. Forsberg C.W. Gibbins L.N. (1985) Transmembrane pH gradient and membrane potential in Clostridium acetobutylicum during growth under acetogenic and solventogenic conditions. Appl. Environ. Microbiol. 65, 3244–3247.
Shi Y. Weimer P.J. (1992) Response surface analysis of the effect of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Appl. Environ. Microbiol. 58, 2583–2591.
10.1007/BF00292079
Weimer P.J. Shi Y. Odt C.L. (1990) A segmented gas/liquid delivery system for continuous culture of microorganisms on insoluble substrates and its use for growth of Ruminoccus flavefaciens on cellulose. Appl. Microbiol. Biotechnol. 36, 178–183.
10.1128/JB.183.1.119-130.2001
10.1128/AEM.67.9.3837-3845.2001
10.1128/AEM.67.9.3846-3851.2001
Bond D.R. Russell J.B. (1996) A role for fructose 1,6-diphosphate in the ATPase-mediated energy-spilling reaction of Streptococcus bovis . Appl. Environ. Microbiol. 62, 2095–2099.
Russell J.B. Cook G.M. (1995) Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol. Rev. 59, 48–62.
Neijssel O.M. Tempest D.W. (1976) Bioenergetics aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient culture. Arch. Microbiol. Physiol. 107, 215–221.
Neijssel O.M. Tempest D.W. (1975) The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 growing in chemostat culture. Arch. Microbiol. Physiol. 106, 251–258.
10.1111/j.1574-6976.1998.tb00358.x
10.1002/(SICI)1097-0290(20000205)67:3<327::AID-BIT9>3.0.CO;2-U
Ng T. Zeikus J.G. (1982) Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum . J. Bacteriol. 150, 1391–1399.
10.1128/JB.182.7.2010-2017.2000
Russell J.B. (1998) Strategies that ruminal bacteria use to handle excess carbohydrate. J. Anim. Sci. 76, 1955–1963.
Matheron C. Delort A.M. Gaudet G. Forano E. Liptaj T. (1998) 13C and 1H nuclear magnetic resonance study of glycogen futile cycling in strains of the genus Fibrobacter . Appl. Environ. Microbiol. 64, 74–81.
Gaudet G. Forano E. Dauphin G. Delort A.M. (1992) Futile cycling of glycogen in Fibrobacter succinogenes as shown by in situ 1H-NMR and 13C-NMR investigation. Eur. J. Biochem. 207, 155–162.
Preiss J. Romeo T. (1989) Physiology, biochemistry and genetics of bacterial glycogen synthesis. Adv. Microb. Physiol. 30, 183–233.
Preiss, J. Regulation of glycogen biosynthesis Neidhardt, F.C., Curtiss III, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M., He, U., Eds., Escherichia coli and Salmonella: cellular and molecular biology. vol. 1, 1996. American Society for Microbiology, Washington DC. 1015–1024
10.1146/annurev.mi.38.100184.002223
10.1111/j.1574-6976.1996.tb00255.x
10.1111/j.1574-6976.2002.tb00621.x
10.1016/S0168-9525(02)02734-8
Jungermann K. Thauer R.K. Leimenstoll G. Decker K. (1973) Function of reduced pyridine nucleotide-ferredoxin oxidoreductase in saccharolytic Clostridia . Biochim. Biophys. Acta 305, 268–280.
Payot S. Guedon E. Gelhaye E. Petitdemange H. (1999) Induction of lactate production associated with a decrease in NADH cell content enables growth resumption of Clostridium cellulolyticum in batch cultures on cellobiose. Res. Microbiol. 150, 465–473.
Russell J.B. (1986) Heat production by ruminal bacteria in continuous culture relationship to maintenance energy. J. Bacteriol. 168, 694–701.
10.1099/13500872-145-8-1831
Melville S.B. Michel T.A. Macy J.M. (1988) Pathway and sites for energy conservation in the metabolism of glucose by Selenomonas ruminantium . J. Bacteriol. 170, 5298–5304.
Russell J.B. Hino T. (1985) Regulation of lactate production in Streptococcus bovis: a spiraling effect contributes to rumen acidosis. J. Diary Sci. 68, 1955–1963.
Garvie E.I. (1980) Bacterial lactate dehydrogenase. Microbiol. Rev. 44, 106–139.
10.1111/j.1365-2672.1992.tb04990.x
10.3168/jds.S0022-0302(72)85615-7
10.1099/00221287-139-8-1861
10.1099/00221287-107-1-45
Prasad C. Freese E. (1974) Cell lysis of Bacillus subtilis caused by intracellular accumulation of glucose-1-phosphate. J. Bacteriol. 118, 1111–1122.
Bock A. Neidhardt F.C. (1966) Properties of a mutant of Escherichia coli with temperature sensitive fructose-1,6-diphosphatase. J. Bacteriol. 92, 470–476.
Cozzarelli N.R. Koch J.P. Lin E.C.C. (1965) Growth stasis by accumulated l-glycerophosphate in Escherichia coli . J. Bacteriol. 90, 1325–1329.
10.1016/0141-0229(89)90073-2
10.1007/s002030050635
10.1146/annurev.mi.38.100184.000405
Huang K. Rudolph F.B. Bennett G.N. (1999) Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1,2-propanediol. Appl. Environ. Microbiol. 65, 3244–3247.
Fond O. Petitdemange E. Petitdemange H. Engasser J.M. (1983) Cellulose fermentation by a coculture of a mesophilic cellulolytic Clostridium and Clostridium acetobutylicum . Biotechnol. Bioeng. Symp. 13, 217–224.
Petitdemange H. (1984) Fermentation de la cellulose par une culture mixte de Clostridum cellulolyticum et Clostridium acetobutylicum . Biomasse Actualités 6, 31–34.
10.1074/jbc.M102082200
10.1016/0167-7799(94)90039-6
10.1074/jbc.M207672200
10.1128/AEM.68.1.53-58.2002
Jennert K.C. Tardif C. Young D.I. Young M. (2000) Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiology 146, 3071–3080.
10.1038/sj.jim.7000081
10.1016/0378-1119(93)90677-U
10.1016/0968-0004(92)90485-R
10.1128/MMBR.66.3.506-577.2002
Downs, D.M. Genomics and bacterial metabolism. Curr. Iss. Mol. Biol. 2003. 5
10.1002/bit.10142
10.1006/anae.1996.0023
Chen J. Weimer P.J. (2001) Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of noncellulolyitc bacteria. Microbiology 147, 21–30.
Cavedon K. Canale-Parola E. (1992) Physiological interaction between a mesophilic cellulolytic Clostridium and a noncellulolytic bacterium. FEMS Microbiol. Ecol. 86, 237–245.
10.1126/science.1058830
Dykhuizen D. Hartl D. (1978) Transport by the lactose permease of Escherichia coli as the basis of lactose killing. J. Bacteriol. 135, 876–882.
10.1016/S0065-2911(08)60166-6
10.1023/A:1000664013047
10.1002/bies.10233
Gilbert P. Maira-Litran T. McBain A.J. Rickard A.H. Whyte F.W. (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv. Microb. Physiol. 46, 202–256.
10.1385/MB:15:3:211
de Crecy-Lagard, V.A., Bellalou, J., Mutzel, R., Marliere, P. Long term adaptation of a microbial population to a permanent metabolic constraint: overcoming thymineless death by experimental evolution of Escherichia coli. BMC Biotechnol. 1, 2001. 10
10.1016/S0167-7799(97)01141-4