<i>Arthrobacter aurescens</i> TC1 Metabolizes Diverse <i>s</i> -Triazine Ring Compounds

Applied and Environmental Microbiology - Tập 68 Số 12 - Trang 5973-5980 - 2002
Lisa Strong1,2, Charlotte Rosendahl2, Gilbert Johnson1,2, Michael J. Sadowsky1,3, Lawrence P. Wackett1,2
1Biotechnology Institute
2Department of Biochemistry, Molecular Biology and Biophysics,
3Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108

Tóm tắt

ABSTRACT Arthrobacter aurescens strain TC1 was isolated without enrichment by plating atrazine-contaminated soil directly onto atrazine-clearing plates. A. aurescens TC1 grew in liquid medium with atrazine as the sole source of nitrogen, carbon, and energy, consuming up to 3,000 mg of atrazine per liter. A. aurescens TC1 is metabolically diverse and grew on a wider range of s -triazine compounds than any bacterium previously characterized. The 23 s -triazine substrates serving as the sole nitrogen source included the herbicides ametryn, atratone, cyanazine, prometryn, and simazine. Moreover, atrazine substrate analogs containing fluorine, mercaptan, and cyano groups in place of the chlorine substituent were also growth substrates. Analogs containing hydrogen, azido, and amino functionalities in place of chlorine were not growth substrates. A. aurescens TC1 also metabolized compounds containing chlorine plus N -ethyl, N -propyl, N -butyl, N - s -butyl, N -isobutyl, or N - t -butyl substituents on the s -triazine ring. Atrazine was metabolized to alkylamines and cyanuric acid, the latter accumulating stoichiometrically. Ethylamine and isopropylamine each served as the source of carbon and nitrogen for growth. PCR experiments identified genes with high sequence identity to atzB and atzC , but not to atzA , from Pseudomonas sp. strain ADP.

Từ khóa


Tài liệu tham khảo

Aspelin A. L. and A. H. Grube. 1999. Pesticides industry sales and usage 1996 and 1997 market estimates. Document 733-R-99-001. Office of Prevention Pesticides and Toxic Substances U.S. Environmental Protection Agency Washington D.C.

Ausubel F. M. R. Brent R. E. Kingston and D. Moore. 1999. Short protocols in molecular biology: a compendium of methods from Current Protocols in Molecular Biology 4th ed. John Wiley & Sons New York N.Y.

10.1128/aem.63.3.916-923.1997

10.1128/aem.63.3.862-866.1997

10.1128/jb.124.1.285-289.1975

10.1111/j.1574-6968.1987.tb02454.x

10.1021/jf00108a009

10.1128/jb.178.16.4894-4900.1996

10.1128/AEM.64.1.178-184.1998

10.1128/aem.63.4.1326-1331.1997

10.1128/jb.173.3.1363-1366.1991

10.1128/jb.173.3.1215-1222.1991

10.1128/jb.151.1.48-57.1982

10.1080/10643388909388356

10.1099/00207713-45-4-837

10.1128/aem.61.4.1451-1457.1995

10.1128/JB.183.19.5684-5697.2001

10.1111/j.1574-6968.2002.tb10989.x

10.1016/0005-2728(81)90023-2

Quirke J. M. E. 1984. 1 3 5-Triazines p. 459-529. In A. R. Katrizky and C. W. Rees (ed.) Comprehensive heterocyclic chemistry. Pergamon Press New York N.Y.

10.1128/aem.61.1.297-302.1995

10.1111/j.1574-6941.2001.tb00842.x

10.1128/JB.180.1.152-158.1998

10.1128/JB.183.8.2405-2410.2001

Seffernick, J. L., G. Johnson, M. J. Sadowsky, and L. P. Wackett. 2001. Substrate specificity of atrazine chlorohydrolase and atrazine-catabolizing bacteria. Appl. Environ. Microbiol.66:4247-4252.

10.1021/bi011293r

10.1128/aem.59.9.3083-3090.1993

10.1128/JB.184.19.5376-5384.2002

10.1007/BF00114625

10.1046/j.1462-2920.2000.00079.x

10.1128/AEM.64.9.3368-3375.1998

10.1128/AEM.66.8.3134-3141.2000

10.1128/AEM.66.7.2773-2782.2000

Vandermeer J. 1981. Elementary mathematical ecology. Wiley & Sons New York N.Y.

10.1007/s00253-001-0862-y

Wenk, M., T. Baumgartner, J. Dobovsek, T. Fuchs, J. Kucsera, J. Zopfi, and G. Stucki. 1998. Rapid atrazine mineralization in soil slurry and moist soil by inoculation of an atrazine-degrading Pseudomonas sp. strain. Appl. Environ. Microbiol.49:624-630.

10.1021/bi971797i

10.1128/aem.60.12.4297-4302.1994

10.1128/aem.62.12.4504-4513.1996