$$L^{p}$$-Improving Bounds and Weighted Estimates for Maximal Functions Associated with Curvature

Wenjuan Li1, Hui-Ju Wang2, Yujia Zhai3
1Northwestern Polytechnical University
2School of Mathematics and Statistics, Henan University, Kaifeng, China
3School of Mathematical and Statistical Sciences, Clemson University, Clemson, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson, T., Hughes, K., Roos, J., Seeger, A.: $$L^p \rightarrow L^q$$ bounds for spherical maximal operators. Math. Zeitshrift 297, 1057–1074 (2021)

Beltran, D., Roos, J., Seeger, A.: Multi-scale sparse domination, arXiv Preprint, arXiv: 2009.00227v2

Bernicot, F., Frey, D., Petermichl, S.: Sharp weighted norm estimates beyond Calderón-Zygmund theory. Anal. PDE 9(5), 1079–1113 (2016)

Bourgain, J.: Avarages in the plane over convex curves and maximal operators. J. Anal. Math. 47, 69–85 (1986)

Cladek, L., Ou, Y.: Sparse domination of Hilbert transforms along curves. Math. Res. Lett. 25(2), 415–436 (2018)

Conde-Alonso, J.M., Di Plinio, F., Parissis, I., Vempati, M.N.: A metric approach to sparse domination. Ann. Mat. Pura Appl. 201, 1–37 (2022)

Cowling, M., Mauceri, G.: Inequalities for some maximal functions. II. Trans. Am. Math. Soc. 287, 431–455 (1985)

Cowling, M., Mauceri, G.: Oscillatory integrals and Fourier transforms of surface carried measures. Trans. Am. Math. Soc. 304, 53–68 (1987)

Greenleaf, A.: Principal curvature and harmonic analysis. Indiana U. Math. J. 4, 519–537 (1981)

Hu, B.: Sparse domination of singular Radon transform. J. Math. Pures Appl. 139(9), 235–316 (2020)

Ikromov, I.A., Kempe, M., Müller, D.: Estimate for maximal operator functions associated with hypersurfaces in $${{\mathbb{R} }}^3$$ and related problems of harmonic analysis. Acta Math. 204, 151–171 (2010)

Iosevich, A.: Maximal operators assciated to families of flat curves in the plane. Duke Math. J. 76, 633–644 (1994)

Iosevich, A., Sawyer, E.: Osillatory integrals and maximal averages over homogeneous surfaces. Duke Math. J. 82, 103–141 (1996)

Iosevich, A., Sawyer, E.: Maximal averages over surfaces. Adv. Math. 132, 46–119 (1997)

Iosevich, A., Sawyer, E.: Sharp $$L^{p} \rightarrow L^{q}$$ estimates for a class of averaging operators. Ann. lnst. Fourier Grenoble 46(5), 1359–1384 (1996)

Iosevich, A., Sawyer, E., Seeger, A.: On averaging operators associated with convex hypersurfaces of finite type. J. Anal. Math. 79, 159–187 (1999)

Lacey, M.T.: Sparse bounds for spherical maximal functions. J. Anal. Math. 139, 612–635 (2019)

Lee, S.: Endpoint estimates for the circular maximal function. Proc. Am. Math. Soc. 134, 1433–1442 (2003)

Lee, S.: Linear and bilinear estimates for oscillatory integral operators related to restriction to hypersurfaces. J. Funct. Anal. 241, 56–98 (2006)

Li, W.: Maximal functions associated with non-isotropic dilations of hypersurfaces in $${\mathbb{R} }^{3}$$. J. Math. Pures Appl. 113, 70–140 (2018)

Mockenhaupt, G., Seeger, A., Sogge, C.D.: Wave front sets, local smoothing and Bourgain’s circular maximal theorem. Ann. Math. 136, 207–218 (1992)

Mockenhaupt, G., Seeger, A., Sogge, C.D.: Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Am. Math. Soc. 6, 65–130 (1993)

Nagel, A., Riviere, N., Wainger, S.: A maximal function associated to the curve (t,$$t^2$$). Proc. Natl. Acad. Sci. USA 73, 1416–1417 (1976)

Nagel, A., Seeger, A., Wainger, S.: Averages over convex hypersurfaces. Am. J. Math. 115, 903–927 (1993)

Roos, J., Seeger, A.: Spherical maximal functions and fractal dimensions of dilation sets. Am. J. Math

Schlag, W.: A generalization of Bourgain’s circular maximal functions. J. Am. Math. Soc. 10, 103–122 (1997)

Schlag, W., Sogge, C.D.: Local smoothing estimates related to the circular maximal theorem. Math. Res. Lett. 4, 1–15 (1997)

Sogge, C.D.: Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, vol. 105. Cambridge University Press, Cambridge (1993)

Sogge, C.D.: Maximal operators associtated to hypersurfaces with one nonvanishing principle curvature. In: Fourier Analysis and Partial Differential Equations (Miraflores de la Sierra, Spain, 1992). Stud. Adv. Math., pp. 317–323 CRC, Boca Raton (1995)

Sogge, C.D., Stein, E.M.: Avarages of functions over hypersurfaces in $${{\mathbb{R} }}^n$$. Invent. Math. 82, 543–556 (1985)

Stein, E.M.: Maximal functions. I. Spherical means. Proc. Natl. Acad. Sci. USA 73, 2174–2175 (1976)

Stein, E.M.: Maximal functions: homogeneous curves. Proc. Natl. Acad. Sci. USA 73, 2176–2177 (1976)

Stein, E.M.: Hamonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Mathematical Series, Monographs in Harmonic Analysis, vol. 43. Princeton University Press, Princeton (1993)

Stein, E.M., Wainger, S.: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84, 1239–1295 (1978)

Strichartz, R.S.: Convolutions with kernels having singularities on a sphere. Trans. Am. Math. Soc. 148, 461–471 (1970)

Zimmermann, E.: On $$L^p$$-estimates for maximal average over hypersurfaces not satisfying the transversality condition, Phd thesis, Christian-Albrechts Universität Bibliothek Kiel (2014)