$$L^{p}$$-Improving Bounds and Weighted Estimates for Maximal Functions Associated with Curvature
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, T., Hughes, K., Roos, J., Seeger, A.: $$L^p \rightarrow L^q$$ bounds for spherical maximal operators. Math. Zeitshrift 297, 1057–1074 (2021)
Beltran, D., Roos, J., Seeger, A.: Multi-scale sparse domination, arXiv Preprint, arXiv: 2009.00227v2
Bernicot, F., Frey, D., Petermichl, S.: Sharp weighted norm estimates beyond Calderón-Zygmund theory. Anal. PDE 9(5), 1079–1113 (2016)
Bourgain, J.: Avarages in the plane over convex curves and maximal operators. J. Anal. Math. 47, 69–85 (1986)
Cladek, L., Ou, Y.: Sparse domination of Hilbert transforms along curves. Math. Res. Lett. 25(2), 415–436 (2018)
Conde-Alonso, J.M., Di Plinio, F., Parissis, I., Vempati, M.N.: A metric approach to sparse domination. Ann. Mat. Pura Appl. 201, 1–37 (2022)
Cowling, M., Mauceri, G.: Inequalities for some maximal functions. II. Trans. Am. Math. Soc. 287, 431–455 (1985)
Cowling, M., Mauceri, G.: Oscillatory integrals and Fourier transforms of surface carried measures. Trans. Am. Math. Soc. 304, 53–68 (1987)
Ikromov, I.A., Kempe, M., Müller, D.: Estimate for maximal operator functions associated with hypersurfaces in $${{\mathbb{R} }}^3$$ and related problems of harmonic analysis. Acta Math. 204, 151–171 (2010)
Iosevich, A.: Maximal operators assciated to families of flat curves in the plane. Duke Math. J. 76, 633–644 (1994)
Iosevich, A., Sawyer, E.: Osillatory integrals and maximal averages over homogeneous surfaces. Duke Math. J. 82, 103–141 (1996)
Iosevich, A., Sawyer, E.: Sharp $$L^{p} \rightarrow L^{q}$$ estimates for a class of averaging operators. Ann. lnst. Fourier Grenoble 46(5), 1359–1384 (1996)
Iosevich, A., Sawyer, E., Seeger, A.: On averaging operators associated with convex hypersurfaces of finite type. J. Anal. Math. 79, 159–187 (1999)
Lee, S.: Endpoint estimates for the circular maximal function. Proc. Am. Math. Soc. 134, 1433–1442 (2003)
Lee, S.: Linear and bilinear estimates for oscillatory integral operators related to restriction to hypersurfaces. J. Funct. Anal. 241, 56–98 (2006)
Li, W.: Maximal functions associated with non-isotropic dilations of hypersurfaces in $${\mathbb{R} }^{3}$$. J. Math. Pures Appl. 113, 70–140 (2018)
Mockenhaupt, G., Seeger, A., Sogge, C.D.: Wave front sets, local smoothing and Bourgain’s circular maximal theorem. Ann. Math. 136, 207–218 (1992)
Mockenhaupt, G., Seeger, A., Sogge, C.D.: Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Am. Math. Soc. 6, 65–130 (1993)
Nagel, A., Riviere, N., Wainger, S.: A maximal function associated to the curve (t,$$t^2$$). Proc. Natl. Acad. Sci. USA 73, 1416–1417 (1976)
Nagel, A., Seeger, A., Wainger, S.: Averages over convex hypersurfaces. Am. J. Math. 115, 903–927 (1993)
Roos, J., Seeger, A.: Spherical maximal functions and fractal dimensions of dilation sets. Am. J. Math
Schlag, W.: A generalization of Bourgain’s circular maximal functions. J. Am. Math. Soc. 10, 103–122 (1997)
Schlag, W., Sogge, C.D.: Local smoothing estimates related to the circular maximal theorem. Math. Res. Lett. 4, 1–15 (1997)
Sogge, C.D.: Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, vol. 105. Cambridge University Press, Cambridge (1993)
Sogge, C.D.: Maximal operators associtated to hypersurfaces with one nonvanishing principle curvature. In: Fourier Analysis and Partial Differential Equations (Miraflores de la Sierra, Spain, 1992). Stud. Adv. Math., pp. 317–323 CRC, Boca Raton (1995)
Sogge, C.D., Stein, E.M.: Avarages of functions over hypersurfaces in $${{\mathbb{R} }}^n$$. Invent. Math. 82, 543–556 (1985)
Stein, E.M.: Hamonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Mathematical Series, Monographs in Harmonic Analysis, vol. 43. Princeton University Press, Princeton (1993)
Stein, E.M., Wainger, S.: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84, 1239–1295 (1978)
Strichartz, R.S.: Convolutions with kernels having singularities on a sphere. Trans. Am. Math. Soc. 148, 461–471 (1970)
Zimmermann, E.: On $$L^p$$-estimates for maximal average over hypersurfaces not satisfying the transversality condition, Phd thesis, Christian-Albrechts Universität Bibliothek Kiel (2014)