π–π interaction between aromatic ring and copper-coordinated His81 imidazole regulates the blue copper active-site structure

JBIC Journal of Biological Inorganic Chemistry - Tập 12 - Trang 165-173 - 2006
Rehab F. Abdelhamid1, Yuji Obara1, Yoshiko Uchida1, Takamitsu Kohzuma1, David M. Dooley2, Doreen E. Brown2, Hiroshi Hori3
1Institute of Applied Beam Science, Ibaraki University, Mito, Ibaraki, Japan
2Department of Chemistry and Biochemistry, Montana State University, Bozeman, USA
3Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan

Tóm tắt

Noncovalent weak interactions play important roles in biological systems. In particular, such interactions in the second coordination shell of metal ions in proteins may modulate the structure and reactivity of the metal ion site in functionally significant ways. Recently, π–π interactions between metal ion coordinated histidine imidazoles and aromatic amino acids have been recognized as potentially important contributors to the properties of metal ion sites. In this paper we demonstrate that in pseudoazurin (a blue copper protein) the π–π interaction between a coordinated histidine imidazole ring and the side chains of aromatic amino acids in the second coordination sphere, significantly influences the properties of the blue copper site. Electronic absorption and electron paramagnetic resonance spectra indicate that the blue copper electronic structure is perturbed, as is the redox potential, by the introduction of a second coordination shell π–π interaction. We suggest that the π–π interaction with the metal ion coordinated histidine imidazole ring modulates the electron delocalization in the active site, and that such interactions may be functionally important in refining the reactivity of blue copper sites.

Tài liệu tham khảo

Burley SK, Petsko GA (1985) Science 229:23–28 Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell. Garland, New York, pp 89–138 Sheraga HA (1979) Acc Chem Res 12:7–14 Burley SK, Petsko A (1988) Adv Protein Chem 39:125–189 Meyer EA, Catellano RK, Diedrich F (2003) Angew Chem 42:1210–1250 Darby NJ, Creighton TE (1995) Protein structure. Oxford University Press, New York Neidle S (1994) DNA structure and recognition. Oxford University Press, New York Fersht A (1999) Structure and mechanism in protein science. Freeman, New York Dougherty DA (1996) Science 271:163–168 Ma JC, Dougherty DA (1997) Chem Rev 97:1303–1324 Gallivan JP, Dougherty DA (1999) Proc Natl Acad Sci USA 96:9459–9464 Rashkin MJ, Hughes RM, Calloway NT, Waters ML (2004) J Am Chem Soc 126:13320–13325 Kohzuma T, Inoue T, Yoshizak F, Sasakawa Y, Onodera K, Nagatomo S, Kitagawa T, Uzawa S, Isobe Y, Sugimura Y, Gotowda M, Kai Y (1999) J Biol Chem 274:11817–11823 Yamauchi O, Odani A, Takani M (2002) J Chem Soc Dalton Trans 3411–3421 Yamauchi O, Odani A, Kohzuma T, Masuda H, Toriumi K, Saito K (1989) Inorg Chem 28:4066–4067 Ito N, Philips SEV, Stevens C, Ogel ZB, McPherson MJ, Keen JN, Yadav KDS, Knowles PF (1991) Nature 350:87–90 Ito N, Philips SEV, Yadav KDS, Knowles P F (1994) J Mol Biol 238:794–814 Tsukihara T, Aoyama H, Yamashita E, Tomozaki T, Yamaguchi H, Shinzawa -Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Science 269:1069–1074 Berglund GI, Carlsson G H, Smith AT, Szöke H, Henriksen A, Hajdu J (2002) Nature 417:463–468 Goodin DB, McRee DE (1993) Biochemistry 32:3313–3324 Takayama Y, Harada E, Kobayashi R, Ozawa K, Akutsu H (2004) Biochemistry 43:10859–10866 de Visser SP, Shaik S, Sharma PK, Kumar D, Thie W (2003) J Am Chem Soc 125:15779–15788 Li H, Webb SP, Ivanic J, Jensen JH (2004) J Am Chem Soc 126:8010–8019 Dudev T, Lin YL, Dudev M, Lim C (2003) J Am Chem Soc 125:3168–3180 Valley MP, Brown CK, Burk DL, Vetting MW, Ohlendorf DH, Lipscomb JD (2005) Biochemistry 44:11024–11039 Zumft W G (1997) Microbiol Mol Biol Rev 61:533–616 Adman ET, Turley S, Bramson R, Petratos K, Banner D, Tsernoglou D, Beppu T, Watanabe H (1989) J Biol Chem 264:87–99 Vakoufari E, Wilson KS, Petratos K (1994) FEBS Lett 347:203–206 Williams PA, Fülöp V, Leung YC, Chan C, Moi JWB, Howlett G, Ferguson SJ, Radford SE, Hadju (1999) J Nat Struct Biol 2:975–982 Inoue T, Nishio N, Suzuki S, Kataoka K, Kohzuma T, Kai Y (1999) J Biol Chem 274:17845–17852 Impagiazzo A, Ubbink M (2004) J Am Chem Soc 126:5658–5659 Kohzuma T, Seki M, Niizeki T(2003) J Inorg Biochem 96:169 Yanagisawa S, Sato K, Kikuchi M, Kohzuma T, Dennison C (2003) Biochemistry 42:6853–6862 Kohzuma T, Dennison C, McFarlane W, Nakashim S, Kitagawa T, Inou T, Kai Y, Nishio N, Shidara S, Suzuki S, Sykes AG (1995) J Biol Chem 270:25733–25738 Solomon EI, Lowery MD (1993) Science 259:1575–1581 Gewirth AA, Solomon EI (1988) J Am Chem Soc 110:3811–3819 Harada I, Takeuchi H (1986) In: Clark RJH, Hester RE (eds) Advances in spectroscopy, vol 13. Wiley, Chichester, pp 113–175 Takeuchi H (2003) Biopolymers 72:305–317 Lu Y, LaCroix LB, Lowery MD, Solomon EI, Bender CJ, Peisach J, Roe JA, Gralla EB, Valentine JS (1993) J Am Chem Soc 115:5907–5918 Basumallick L, Szilagyi RK, Zhao Y, Shapleigh JP, Scholes CP, Solomon EI (2003) J Am Chem Soc 125:14784–14792 Comba P, Müller V, Remenyi R (2004) J Inorg Biochem 98:896–902 Yamauchi O, Odani A (1985) J Am Chem Soc 107:5938–5945 Dooley DM, Moog RS, Liu MY, Payne W, LeGall J (1988) J Biol Chem 263:14625–14628 Chou PY, Fasman GD (1978) Annu Rev Biochem 47:258 Odani A, Sekiguchi T, Okada H, Ishiguro S, Yamauchi O (1991) Inorg Chem 30:2133–2138 DeepView/Swiss-PdbViewer, version 3.7a1 for OSX. http://www.expasy.org/spdbv/