β1 integrin regulates Arg to promote invadopodial maturation and matrix degradation

Molecular Biology of the Cell - Tập 24 Số 11 - Trang 1661-1675 - 2013
Brian T. Beaty1, Ved P. Sharma2,3, Jose Javier Bravo‐Cordero2,3, Mark A. Simpson4, Robert J. Eddy5, Anthony J. Koleske6,7, John S. Condeelis2,3
1Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, New York, NY 10461, USA.
2Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, New York, NY 10461
3Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, New York, NY 10461
4cDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
5aDepartment of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, New York, NY 10461
6Department of Cell Biology, Yale University, New Haven, CT 06520
7Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520

Tóm tắt

β1 integrin has been shown to promote metastasis in a number of tumor models, including breast, ovarian, pancreatic, and skin cancer; however, the mechanism by which it does so is poorly understood. Invasive membrane protrusions called invadopodia are believed to facilitate extracellular matrix degradation and intravasation during metastasis. Previous work showed that β1 integrin localizes to invadopodia, but its role in regulating invadopodial function has not been well characterized. We find that β1 integrin is required for the formation of mature, degradation-competent invadopodia in both two- and three-dimensional matrices but is dispensable for invadopodium precursor formation in metastatic human breast cancer cells. β1 integrin is activated during invadopodium precursor maturation, and forced β1 integrin activation enhances the rate of invadopodial matrix proteolysis. Furthermore, β1 integrin interacts with the tyrosine kinase Arg and stimulates Arg-dependent phosphorylation of cortactin on tyrosine 421. Silencing β1 integrin with small interfering RNA completely abrogates Arg-dependent cortactin phosphorylation and cofilin-dependent barbed-end formation at invadopodia, leading to a significant decrease in the number and stability of mature invadopodia. These results describe a fundamental role for β1 integrin in controlling actin polymerization–dependent invadopodial maturation and matrix degradation in metastatic tumor cells.

Từ khóa


Tài liệu tham khảo

Artym VV, 2006, Cancer Res, 66, 3034, 10.1158/0008-5472.CAN-05-2177

Askari JA, 2010, J Cell Biol, 188, 891, 10.1083/jcb.200907174

Bazzoni G, 1995, J Biol Chem, 270, 25570, 10.1074/jbc.270.43.25570

Bharadwaj S, 2005, Oncogene, 24, 8291, 10.1038/sj.onc.1208993

10.1091/mbc.e06-02-0132

Branch KM, 2012, Biol Open, 1, 1, 10.1242/bio.20121867

Bravo-Cordero JJ, 2012, Curr Opin Cell Biol, 24, 277, 10.1016/j.ceb.2011.12.004

Bravo-Cordero JJ, 2011, Curr Biol, 21, 635, 10.1016/j.cub.2011.03.039

Buccione R, 2009, Cancer Metastasis Rev, 28, 137, 10.1007/s10555-008-9176-1

Byron A, 2009, J Cell Sci, 122, 4009, 10.1242/jcs.056770

Calderwood DA, 2003, Proc Natl Acad Sci USA, 100, 2272, 10.1073/pnas.262791999

Caswell PT, 2008, J Cell Biol, 183, 143, 10.1083/jcb.200804140

Chan AY, 1998, J Cell Sci, 111, 199, 10.1242/jcs.111.2.199

Chan KT, 2009, J Cell Biol, 185, 357, 10.1083/jcb.200809110

Deryugina EI, 2001, Exp Cell Res, 263, 209, 10.1006/excr.2000.5118

Eckert MA, 2011, Cancer Cell, 19, 372, 10.1016/j.ccr.2011.01.036

Eddy RJ, 2000, J Cell Sci, 113, 1287, 10.1242/jcs.113.7.1287

Felding-Habermann B, 2001, Proc Natl Acad Sci USA, 98, 1853, 10.1073/pnas.98.4.1853

Fredriksson S, 2002, Nat Biotechnol, 20, 473, 10.1038/nbt0502-473

Frelinger AL, 1988, J Biol Chem, 263, 12397, 10.1016/S0021-9258(18)37769-X

Galvez BG, 2002, J Cell Biol, 159, 509, 10.1083/jcb.200205026

Gligorijevic B, 2012, J Cell Sci, 125, 724, 10.1242/jcs.092726

Grzesiak JJ, 2011, Int J Cancer, 129, 2905, 10.1002/ijc.25942

Guo W, 2004, Nat Rev Mol Cell Biol, 5, 816, 10.1038/nrm1490

Hernandez SE, 2004, Trends Cell Biol, 14, 36, 10.1016/j.tcb.2003.11.003

Huck L, 2010, Proc Natl Acad Sci USA, 107, 15559, 10.1073/pnas.1003034107

Huttenlocher A, 2011, Cold Spring Harb Perspect Biol, 3, a005074, 10.1101/cshperspect.a005074

Huttenlocher A, 1998, J Cell Biol, 141, 515, 10.1083/jcb.141.2.515

Ivaska J, 2011, Annu Rev Cell Dev Biol, 27, 291, 10.1146/annurev-cellbio-092910-154017

Kempiak SJ, 2005, J Biol Chem, 280, 5836, 10.1074/jbc.M410713200

Lad Y, 2007, Methods Enzymol, 426, 69, 10.1016/S0076-6879(07)26004-5

Lahlou H, 2011, Breast Cancer Res, 13, 229, 10.1186/bcr2905

Lapetina S, 2009, J Cell Biol, 185, 503, 10.1083/jcb.200809085

Legate KR, 2005, Nat Rev Mol Cell Biol, 7, 20, 10.1038/nrm1789

Li A, 2010, Curr Biol, 20, 339, 10.1016/j.cub.2009.12.035

Linder S, 2011, Annu Rev Cell Dev Biol, 27, 185, 10.1146/annurev-cellbio-092910-154216

Mader CC, 2011, Cancer Res, 71, 1730, 10.1158/0008-5472.CAN-10-1432

Magalhaes MAO, 2011, J Cell Biol, 195, 903, 10.1083/jcb.201103045

Maschler S, 2005, Oncogene, 24, 2032, 10.1038/sj.onc.1208423

Mierke CT, 2011, J Cell Sci, 124, 369, 10.1242/jcs.071985

Mitra AK, 2011, Oncogene, 28, 181

Miyamoto S, 1995, Science, 267, 883, 10.1126/science.7846531

Mould AP, 1996, J Biol Chem, 271, 20365, 10.1074/jbc.271.34.20365

Mould AP, 2004, Curr Opin Cell Biol, 16, 544, 10.1016/j.ceb.2004.07.003

Mueller SC, 1999, J Biol Chem, 274, 24947, 10.1074/jbc.274.35.24947

Murphy DA, 2011, Nat Rev Mol Cell Biol, 12, 413, 10.1038/nrm3141

Nakahara H, 1998, J Biol Chem, 273, 9, 10.1074/jbc.273.1.9

Nishida N, 2006, Immunity, 25, 583, 10.1016/j.immuni.2006.07.016

Nystrom ML, 2005, J Pathol, 205, 468, 10.1002/path.1716

Oser M, 2010, J Cell Sci, 123, 3662, 10.1242/jcs.068163

Oser M, 2009, J Cell Biol, 186, 571, 10.1083/jcb.200812176

Park CC, 2006, Cancer Res, 66, 1526, 10.1158/0008-5472.CAN-05-3071

Patsialou A, 2009, Cancer Res, 69, 9498, 10.1158/0008-5472.CAN-09-1868

Pignatelli J, 2012, J Cell Biol, 197, 421, 10.1083/jcb.201108143

Sakurai-Yageta M, 2008, J Cell Biol, 181, 985, 10.1083/jcb.200709076

Sameni M, 2008, Mol Imaging, 7, 199, 10.2310/7290.2008.00019A

Seals D, 2005, Cancer Cell, 7, 155, 10.1016/j.ccr.2005.01.006

Sharma VP, 2013, Methods Mol Biol

Stylli SS, 2009, J Cell Sci, 122, 2727, 10.1242/jcs.046680

Takada Y, 2007, Genome Biol, 8, 215, 10.1186/gb-2007-8-5-215

Takagi J, 2002, Cell, 110, 599, 10.1016/S0092-8674(02)00935-2

Tanis KQ, 2003, Mol Cell Biol, 23, 3884, 10.1128/MCB.23.11.3884-3896.2003

Trikha M, 1994, Cancer Res, 54, 4993

Wang W, 2007, Nat Rev Cancer, 7, 429, 10.1038/nrc2148

Wang WG, 2004, Cancer Res, 64, 8585, 10.1158/0008-5472.CAN-04-1136

Wang YX, 2001, Proc Natl Acad Sci USA, 98, 14865, 10.1073/pnas.251249298

Warren MS, 2012, J Neurosci, 32, 2824, 10.1523/JNEUROSCI.3942-11.2012

White DE, 2004, Cancer Cell, 6, 159, 10.1016/j.ccr.2004.06.025

Wyckoff JB, 2000, Cancer Res, 60, 2504

Xiong JP, 2001, Science, 294, 339, 10.1126/science.1064535

Yamaguchi H, 2005, J Cell Biol, 168, 441, 10.1083/jcb.200407076