β‐Adrenergic modulation of skeletal muscle contraction: key role of excitation–contraction coupling

Journal of Physiology - Tập 593 Số 21 - Trang 4713-4727 - 2015
Simeon P. Cairns1,2, Fabio Borrani3,4
1Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
2Sports Performance Research Institute New Zealand, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand
3Department of Physiology, University of Lausanne, Lausanne, Switzerland
4Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland

Tóm tắt

Abstract

Our aim is to describe the acute effects of catecholamines/β‐adrenergic agonists on contraction of non‐fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β‐agonists (0.1–30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow‐twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow‐twitch muscles in some conditions. β2‐Adrenoceptor stimulation activates distinct cyclic AMP‐dependent protein kinases to phosphorylate multiple target proteins. β‐Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na+–K+ pump and Na+–K+–2Cl cotransporter function, but this does not increase force. Myofibrillar Ca2+ sensitivity and maximum Ca2+‐activated force are unchanged. All force potentiation involves amplified myoplasmic Ca2+ transients consequent to increased Ca2+ release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca2+ release channels/ryanodine receptors (RyR1) which sensitize the Ca2+‐induced Ca2+ release mechanism. Enhanced trans‐sarcolemmal Ca2+ influx through phosphorylated voltage‐activated Ca2+ channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca2+ pump activity in slow‐twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca2+ loading of SR may assist force potentiation in fast‐twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β‐agonist concentration used. Indeed high‐dose β‐agonists (∼0.1 μm) enhance SR Ca2+‐release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β‐agonists influence muscle performance during exercise/stress in humans. image

Từ khóa


Tài liệu tham khảo

10.1007/BF00498811

10.1113/jphysiol.2012.237925

10.1113/jphysiol.1987.sp016825

10.1113/jphysiol.2007.137687

10.1152/ajpendo.00555.2011

10.1016/j.tcm.2009.07.001

10.1074/jbc.M705830200

Bowman WC, 1980, Handbook of Experimental Pharmacology: Adrenergic Activators and Inhibitors, 47

10.1111/j.1476-5381.1970.tb10334.x

10.1113/jphysiol.1958.sp006088

10.1113/jphysiol.1996.sp021570

10.1016/S0167-8760(01)00152-0

10.1111/j.1476-5381.1993.tb13932.x

10.1002/mus.880161208

10.1152/ajpcell.1994.266.5.C1204

10.1007/s00424-011-0927-4

10.1007/BF00374515

10.1186/2044-5040-1-18

10.1146/annurev.cellbio.16.1.521

Chasiotis D, 1983, Regulation of glycogenolysis in human muscle in response to epinephrine infusion, J Appl Physiol Respir Environ Exerc Physiol, 54, 45, 10.1152/jappl.1983.54.1.45

10.1152/physrev.00011.2003

10.1113/jphysiol.1977.sp011958

10.1055/s-2004-821223

10.1249/MSS.0b013e318284706a

10.1249/MSS.0b013e3182a54ee3

10.1111/j.1748-1716.2011.02302.x

10.1111/sms.12312

Desaphy JF, 1998, Blockade by cAMP of native sodium channels of adult rat skeletal muscle fibers, Am J Physiol Cell Physiol, 44, C1465, 10.1152/ajpcell.1998.275.6.C1465

10.1124/jpet.112.192997

10.1097/JSM.0b013e31823513e1

10.1073/pnas.1012384107

10.1016/0304-4165(78)90012-0

10.1007/BF00370779

10.1038/sj.bjp.0705130

10.1113/jphysiol.1981.sp013747

10.2337/diabetes.51.3.615

10.1016/S0014-5793(99)00727-9

10.1038/sj.bjp.0702482

10.1016/S0006-3495(94)80664-2

10.1152/jappl.2000.89.5.1793

10.1111/j.1440-1681.2011.05574.x

10.1111/j.1600-0773.1980.tb02434.x

10.1007/s00421-014-2970-2

10.1113/jphysiol.2014.277095

10.1073/pnas.91.24.11492

10.1073/pnas.0409695102

10.1111/j.1748-1716.1988.tb08481.x

10.1371/journal.pone.0091175

10.1111/sms.12096

Kirchberger MA, 1976, Effects of adenosine 3′:5′‐monophosphate‐dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles, J Biol Chem, 251, 725, 10.1016/S0021-9258(17)33843-7

Kössler F, 1991, External potassium and action potential propagation in rat fast and slow twitch muscles, Gen Physiol Biophys, 10, 485

10.1007/BF00583798

10.1136/bjsm.2006.033845

10.1152/ajpheart.2000.278.3.H769

10.1152/ajpcell.1997.273.6.C1915

10.1074/jbc.270.31.18459

10.1152/physrev.00028.2007

10.1016/0014-4886(81)90076-5

10.1152/japplphysiol.00592.2010

10.1152/ajpcell.1982.242.3.C234

10.1113/jphysiol.1970.sp009071

10.1083/jcb.153.4.699

10.1085/jgp.200910206

10.1016/0143-4160(95)90064-0

Meissner G, 1984, Adenine nucleotide stimulation of Ca2+‐induced Ca2+ release in sarcoplasmic reticulum, J Biol Chem, 259, 2365, 10.1016/S0021-9258(17)43361-8

10.1016/S0006-3495(91)82124-5

10.2170/jjphysiol.27.195

10.2165/11537540-000000000-00000

Prakash YS, 1999, Effect of β‐adrenoceptor activation on [Ca2+]i regulation in murine skeletal myotubes, Am J Physiol Cell Physiol, 45, C1038, 10.1152/ajpcell.1999.276.5.C1038

10.1083/jcb.200211012

10.1097/JES.0b013e3181c5cde7

10.1113/jphysiol.2013.251553

10.1016/j.cellsig.2009.01.029

10.1083/jcb.200601160

10.1074/jbc.M213279200

10.1085/jgp.79.4.603

10.1007/s00421-011-2307-3

10.1016/0005-2736(76)90429-6

Slack JP, 1997, Phospholamban ablation enhances relaxation in the murine soleus, Am J Physiol Cell Physiol, 42, C1, 10.1152/ajpcell.1997.273.1.C1

Soderling TR, 1970, Inactivation of glycogen synthetase and activation of phosphorylase kinase by muscle adenosine 3ʹ,5ʹ‐monophosphate‐dependent protein kinases, J Biol Chem, 245, 6317, 10.1016/S0021-9258(18)62612-2

Song Q, 2004, Overexpression of phospholamban in slow‐twitch skeletal muscle is associated with depressed contractile function and muscle remodeling, FASEB J, 18, 974, 10.1096/fj.03-1058fje

10.1016/S0143-4160(97)90116-0

10.1016/S0006-291X(77)80088-0

10.1016/0167-4889(93)90023-I

10.1254/jphs.SCE06001X

10.1097/00005768-200007000-00018

10.1042/BJ20050068

10.1007/BF00496184

10.1016/0014-2999(79)90141-9

10.1136/bjsm.12.3.125

10.1002/mus.880121204

10.1139/y89-252

Wolska BM, 1996, Effect of ablation of phospholamban on dynamics of cardiac myocyte contraction and intracellular Ca2+, Am J Physiol Cell Physiol, 40, C391, 10.1152/ajpcell.1996.271.1.C391

10.1152/ajpregu.2001.281.2.R561

10.1111/j.1471-4159.1990.tb02343.x

10.2165/00007256-200838050-00004