α-Fe2O3 Nanoparticles/Vermiculite Clay Material: Structural, Optical and Photocatalytic Properties
Tóm tắt
Từ khóa
Tài liệu tham khảo
Guggenheim, 2006, Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the association Internationale pour l’etude des argiles (AIPEA) nomenclature committee for 2006, Clay Clay Miner., 54, 761, 10.1346/CCMN.2006.0540610
Bergaya, 2006, Structures and Mineralogy of Clay minerals, Handbook of Clay Science, Volume 1, 19, 10.1016/S1572-4352(05)01002-0
Zhou, 2013, Fundamental and applied research on clay minerals: From climate and environment to nanotechnology, Appl. Clay Sci., 274, 3, 10.1016/j.clay.2013.02.013
Bergaya, 2006, Properties and behaviour of iron in clay minerals, Handbook of Clay Science, Volume 1, 423, 10.1016/S1572-4352(05)01013-5
Neumann, 2013, Spectroscopic evidence for Fe (II)–Fe (III) electron transfer at clay mineral edge and basal sites, Environ. Sci. Technol., 47, 6969, 10.1021/es304744v
Alexandrov, 2013, Insights into the mechanism of Fe (II) adsorption and oxidation at Fe–clay mineral surfaces from first-principles calculations, J. Phys. Chem. C, 117, 22880, 10.1021/jp4073125
Gorski, 2013, Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties, Environ. Sci. Technol., 47, 13477, 10.1021/es403824x
Oliveira, 2003, Clay-iron oxide magnetic composites for the adsorption of contaminants in water, Appl. Clay Sci., 22, 169, 10.1016/S0169-1317(02)00156-4
Son, 2010, Structure–property correlation in iron oxide nanoparticle−clay hybrid materials, Chem. Mater., 22, 2226, 10.1021/cm9024843
Coaquira, 2010, Magnetic characterization of vermiculite-based magnetic nanocomposites, J. Non Cryst. Solids, 356, 2574, 10.1016/j.jnoncrysol.2010.03.035
Gao, 2015, Magnetic modification of acid-activated kaolin: Synthesis, characterization, and adsorptive properties, Micropor. Mesopor. Mater., 202, 1, 10.1016/j.micromeso.2014.09.029
Tao, 2002, Clay-intercalated metal complex catalysts and their molecular recognition catalysis, Prog. Chem., 14, 200
Theng, 2010, Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—A review, Appl. Clay Sci., 47, 182, 10.1016/j.clay.2009.11.044
Chen, 2005, α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications, Adv. Mater., 17, 582, 10.1002/adma.200401101
Khedr, 2007, CO2 decomposition over freshly reduced nanocrystalline Fe2O3, Colloid Surf. A Physicochem. Eng. Asp., 302, 517, 10.1016/j.colsurfa.2007.03.024
Nasibulin, 2009, Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions, Nano Res., 2, 373, 10.1007/s12274-009-9036-5
Mishra, 2015, α-Fe2O3 as a photocatalytic material: A review, Appl. Catal. A Gen., 498, 126, 10.1016/j.apcata.2015.03.023
Cornell, R.M., and Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Wiley-VCH. [2nd ed.].
Apte, 2007, Synthesis of nanosize-necked structure α- and γ-Fe2O3 and its photocatalytic activity, J. Am. Ceram. Soc., 90, 412, 10.1111/j.1551-2916.2006.01424.x
Maji, 2012, Synthesis, characterization and photocatalytic activity of α-Fe2O3 nanoparticles, Polyhedron, 33, 145, 10.1016/j.poly.2011.11.017
Sundaramurthy, 2012, Superior pohotocatalytic behavior of novel 1D nanobraid and nanoporous α-Fe2O3 structures, RSC Adv., 2, 8201, 10.1039/c2ra20608k
Fang, 2009, Single-crystal-like hematite colloidal nanocrystal clusters: Synthesis and applications in gas sensors, photocatalysis and water treatment, J. Mater. Chem., 19, 6154, 10.1039/b905034e
Mirhabibi, 2008, Effective factors on synthesis of the hematite-silica red inclusion pigment, Ceram. Int., 34, 491, 10.1016/j.ceramint.2006.11.012
Lassoued, 2017, Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method, Results Phys., 7, 3007, 10.1016/j.rinp.2017.07.066
Kim, 2017, Low temperature CO oxidation over iron oxide nanoparticles decorating internal structures of a mesoporous alumina, Sci. Rep., 7, 40497, 10.1038/srep40497
Balbuena, 2015, Efficient behaviour of hematite towards the photocatalytic degradation of NOx gases, Appl. Catal. B Environ., 165, 529, 10.1016/j.apcatb.2014.10.025
Low, 2017, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review, Appl. Surf. Sci., 392, 658, 10.1016/j.apsusc.2016.09.093
Habisreutinger, 2013, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angew. Chem. Int. Ed., 52, 7372, 10.1002/anie.201207199
Li, 2014, A critical review of CO2 photoconversion: Catalysts and reactors, Catal. Today, 224, 3, 10.1016/j.cattod.2013.12.006
Yuan, 2015, Photocatalytic conversion of CO2 into value-added and renewable fuels, Appl. Surf. Sci., 342, 154, 10.1016/j.apsusc.2015.03.050
Ola, 2015, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, J. Photochem. Photobiol. C Photochem. Rev., 24, 16, 10.1016/j.jphotochemrev.2015.06.001
Shirozu, 1966, Crystal structure of a two-layer Mg-vermiculite, Am. Miner., 51, 1124
Smetana, 2013, Role of vermiculite and zirconium–vermiculite on the formation of zircon–cordierite nanocomposites, Appl. Clay Sci., 75–76, 100
Rafaja, 2010, Adhesion of silver nanoparticles on the clay substrates; modeling and experiment, Appl. Surf. Sci., 256, 2841, 10.1016/j.apsusc.2009.11.037
Smetana, 2011, Preparation and characterization of photoactive composite kaolinite/TiO2, J. Hazard. Mater., 188, 212, 10.1016/j.jhazmat.2011.01.106
2015, Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity, Appl. Catal. B Environ., 162, 392, 10.1016/j.apcatb.2014.07.018
Goddard, 1991, Charge equilibration for molecular dynamics simulations, J. Phys. Chem., 95, 3358, 10.1021/j100161a070
Casewit, 1992, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 114, 10024, 10.1021/ja00051a040
Ritz, 2018, Comparable study of vermiculites from four selected commercial deposits prepared with fixed ceria nanoparticles, Appl. Clay Sci., 151, 164, 10.1016/j.clay.2017.10.006
Scherrer, 1918, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2, 98
Klug, H.P., and Alexander, L.E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley & Sons. [2nd ed.].
Brindley, 1980, Order-disorder in clay mineral structures, Crystal Structures of Clay Minerals and Their X-ray Identification, Volume 2, 125, 10.1180/mono-5.2
Burda, 2012, Structure and stability of kaolinite/TiO2 nanocomposite: DFT and MM computations, J. Mol. Model., 18, 2689, 10.1007/s00894-011-1278-y
Torrent, 2002, Diffuse reflectance spectroscopy of iron oxides, Encycl. Surf. Colloid Sci., 1, 1438
Yamanoi, 2009, Temperature dependence of reflectance spectra and color values of hematite by in situ, high-temperature visible micro-spectroscopy, Am. Miner., 94, 90, 10.2138/am.2009.2779
Kubelka, 1931, Ein Beitrag zur Optik der Farbanstriche, Zeitschrift für Technische Physik, 12, 593
Mathevula, 2017, Structural and optical properties of sol-gel derived α-Fe2O3 nanoparticles, J. Lumin., 192, 879, 10.1016/j.jlumin.2017.07.055
Vayssieres, 2005, One-dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays, Adv. Mater., 17, 2320, 10.1002/adma.200500992
Valášková, M., and Martynková, G.S. (2012). Vermiculite: Structural properties and examples of the use. Clay Minerals in Nature—Their Characterization, Modification and Application, InTech.
Wheeler, 2012, Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties, Energy Environ. Sci., 5, 6682, 10.1039/c2ee00001f
Mahadik, 2014, Photoelectrocatalytic activity of ferric oxide nanocatalyst: A synergestic effect of thickness, Ceram. Int., 40, 9463, 10.1016/j.ceramint.2014.02.019
Zhu, 2004, Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water, J. Mol. Catal. A Chem., 216, 35, 10.1016/j.molcata.2004.01.008