α-Fe2O3 Nanoparticles/Vermiculite Clay Material: Structural, Optical and Photocatalytic Properties

Materials - Tập 12 Số 11 - Trang 1880
Marta Valášková1, Jonáš Tokarský1,2, Jiří Pavlovský3, Tomáš Prostějovský3,1, Kamila Kočí1
1Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava—Poruba, Czech Republic
2Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava—Poruba, Czech Republic
3Department of Chemistry, Faculty of Materials Science and Technology, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava—Poruba, Czech Republic

Tóm tắt

Photocatalysis is increasingly becoming a center of interest due to its wide use in environmental remediation. Hematite (α-Fe2O3) is one promising candidate for photocatalytic applications. Clay materials as vermiculite (Ver) can be used as a carrier to accommodate and stabilize photocatalysts. Two different temperatures (500 °C and 700 °C) were used for preparation of α-Fe2O3 nanoparticles/vermiculite clay materials. The experimental methods used for determination of structural, optical and photocatalytic properties were X-ray fluorescence (ED-XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDS), N2 adsorption method (BET), diffuse reflectance UV-Vis spectroscopy (DRS), photoluminescence spectroscopy (PL) and photocatalytic reduction of CO2, respectively. The data from XRD were confronted with molecular modeling of the material arrangement in the interlayer space of vermiculite structure and the possibility of anchoring the α-Fe2O3 nanoparticles to the surface and edge of vermiculite. Correlations between structural, textural, optical and electrical properties and photocatalytic activity have been studied in detail. The α-Fe2O3 and α-Fe2O3/Ver materials with higher specific surface areas, a smaller crystallite size and structural defects (oxygen vacancies) that a play crucial role in photocatalytic activity, were prepared at a lower calcination temperature of 500 °C.

Từ khóa


Tài liệu tham khảo

Guggenheim, 2006, Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the association Internationale pour l’etude des argiles (AIPEA) nomenclature committee for 2006, Clay Clay Miner., 54, 761, 10.1346/CCMN.2006.0540610

Bergaya, 2006, Structures and Mineralogy of Clay minerals, Handbook of Clay Science, Volume 1, 19, 10.1016/S1572-4352(05)01002-0

Zhou, 2013, Fundamental and applied research on clay minerals: From climate and environment to nanotechnology, Appl. Clay Sci., 274, 3, 10.1016/j.clay.2013.02.013

Bergaya, 2006, Properties and behaviour of iron in clay minerals, Handbook of Clay Science, Volume 1, 423, 10.1016/S1572-4352(05)01013-5

Neumann, 2013, Spectroscopic evidence for Fe (II)–Fe (III) electron transfer at clay mineral edge and basal sites, Environ. Sci. Technol., 47, 6969, 10.1021/es304744v

Alexandrov, 2013, Insights into the mechanism of Fe (II) adsorption and oxidation at Fe–clay mineral surfaces from first-principles calculations, J. Phys. Chem. C, 117, 22880, 10.1021/jp4073125

Gorski, 2013, Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties, Environ. Sci. Technol., 47, 13477, 10.1021/es403824x

Oliveira, 2003, Clay-iron oxide magnetic composites for the adsorption of contaminants in water, Appl. Clay Sci., 22, 169, 10.1016/S0169-1317(02)00156-4

Son, 2010, Structure–property correlation in iron oxide nanoparticle−clay hybrid materials, Chem. Mater., 22, 2226, 10.1021/cm9024843

Coaquira, 2010, Magnetic characterization of vermiculite-based magnetic nanocomposites, J. Non Cryst. Solids, 356, 2574, 10.1016/j.jnoncrysol.2010.03.035

Gao, 2015, Magnetic modification of acid-activated kaolin: Synthesis, characterization, and adsorptive properties, Micropor. Mesopor. Mater., 202, 1, 10.1016/j.micromeso.2014.09.029

Tao, 2002, Clay-intercalated metal complex catalysts and their molecular recognition catalysis, Prog. Chem., 14, 200

Theng, 2010, Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—A review, Appl. Clay Sci., 47, 182, 10.1016/j.clay.2009.11.044

Chen, 2005, α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications, Adv. Mater., 17, 582, 10.1002/adma.200401101

Khedr, 2007, CO2 decomposition over freshly reduced nanocrystalline Fe2O3, Colloid Surf. A Physicochem. Eng. Asp., 302, 517, 10.1016/j.colsurfa.2007.03.024

Nasibulin, 2009, Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions, Nano Res., 2, 373, 10.1007/s12274-009-9036-5

Mishra, 2015, α-Fe2O3 as a photocatalytic material: A review, Appl. Catal. A Gen., 498, 126, 10.1016/j.apcata.2015.03.023

Cornell, R.M., and Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Wiley-VCH. [2nd ed.].

Apte, 2007, Synthesis of nanosize-necked structure α- and γ-Fe2O3 and its photocatalytic activity, J. Am. Ceram. Soc., 90, 412, 10.1111/j.1551-2916.2006.01424.x

Maji, 2012, Synthesis, characterization and photocatalytic activity of α-Fe2O3 nanoparticles, Polyhedron, 33, 145, 10.1016/j.poly.2011.11.017

Sundaramurthy, 2012, Superior pohotocatalytic behavior of novel 1D nanobraid and nanoporous α-Fe2O3 structures, RSC Adv., 2, 8201, 10.1039/c2ra20608k

Fang, 2009, Single-crystal-like hematite colloidal nanocrystal clusters: Synthesis and applications in gas sensors, photocatalysis and water treatment, J. Mater. Chem., 19, 6154, 10.1039/b905034e

Mirhabibi, 2008, Effective factors on synthesis of the hematite-silica red inclusion pigment, Ceram. Int., 34, 491, 10.1016/j.ceramint.2006.11.012

Lassoued, 2017, Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method, Results Phys., 7, 3007, 10.1016/j.rinp.2017.07.066

Kim, 2017, Low temperature CO oxidation over iron oxide nanoparticles decorating internal structures of a mesoporous alumina, Sci. Rep., 7, 40497, 10.1038/srep40497

Balbuena, 2015, Efficient behaviour of hematite towards the photocatalytic degradation of NOx gases, Appl. Catal. B Environ., 165, 529, 10.1016/j.apcatb.2014.10.025

Low, 2017, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review, Appl. Surf. Sci., 392, 658, 10.1016/j.apsusc.2016.09.093

Habisreutinger, 2013, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angew. Chem. Int. Ed., 52, 7372, 10.1002/anie.201207199

Li, 2014, A critical review of CO2 photoconversion: Catalysts and reactors, Catal. Today, 224, 3, 10.1016/j.cattod.2013.12.006

Yuan, 2015, Photocatalytic conversion of CO2 into value-added and renewable fuels, Appl. Surf. Sci., 342, 154, 10.1016/j.apsusc.2015.03.050

Ola, 2015, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, J. Photochem. Photobiol. C Photochem. Rev., 24, 16, 10.1016/j.jphotochemrev.2015.06.001

Shirozu, 1966, Crystal structure of a two-layer Mg-vermiculite, Am. Miner., 51, 1124

Smetana, 2013, Role of vermiculite and zirconium–vermiculite on the formation of zircon–cordierite nanocomposites, Appl. Clay Sci., 75–76, 100

Rafaja, 2010, Adhesion of silver nanoparticles on the clay substrates; modeling and experiment, Appl. Surf. Sci., 256, 2841, 10.1016/j.apsusc.2009.11.037

Smetana, 2011, Preparation and characterization of photoactive composite kaolinite/TiO2, J. Hazard. Mater., 188, 212, 10.1016/j.jhazmat.2011.01.106

2015, Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity, Appl. Catal. B Environ., 162, 392, 10.1016/j.apcatb.2014.07.018

Goddard, 1991, Charge equilibration for molecular dynamics simulations, J. Phys. Chem., 95, 3358, 10.1021/j100161a070

Casewit, 1992, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 114, 10024, 10.1021/ja00051a040

Ritz, 2018, Comparable study of vermiculites from four selected commercial deposits prepared with fixed ceria nanoparticles, Appl. Clay Sci., 151, 164, 10.1016/j.clay.2017.10.006

Scherrer, 1918, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2, 98

Klug, H.P., and Alexander, L.E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley & Sons. [2nd ed.].

Brindley, 1980, Order-disorder in clay mineral structures, Crystal Structures of Clay Minerals and Their X-ray Identification, Volume 2, 125, 10.1180/mono-5.2

Burda, 2012, Structure and stability of kaolinite/TiO2 nanocomposite: DFT and MM computations, J. Mol. Model., 18, 2689, 10.1007/s00894-011-1278-y

Torrent, 2002, Diffuse reflectance spectroscopy of iron oxides, Encycl. Surf. Colloid Sci., 1, 1438

Yamanoi, 2009, Temperature dependence of reflectance spectra and color values of hematite by in situ, high-temperature visible micro-spectroscopy, Am. Miner., 94, 90, 10.2138/am.2009.2779

Kubelka, 1931, Ein Beitrag zur Optik der Farbanstriche, Zeitschrift für Technische Physik, 12, 593

Mathevula, 2017, Structural and optical properties of sol-gel derived α-Fe2O3 nanoparticles, J. Lumin., 192, 879, 10.1016/j.jlumin.2017.07.055

Vayssieres, 2005, One-dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays, Adv. Mater., 17, 2320, 10.1002/adma.200500992

Valášková, M., and Martynková, G.S. (2012). Vermiculite: Structural properties and examples of the use. Clay Minerals in Nature—Their Characterization, Modification and Application, InTech.

Wheeler, 2012, Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties, Energy Environ. Sci., 5, 6682, 10.1039/c2ee00001f

Mahadik, 2014, Photoelectrocatalytic activity of ferric oxide nanocatalyst: A synergestic effect of thickness, Ceram. Int., 40, 9463, 10.1016/j.ceramint.2014.02.019

Zhu, 2004, Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water, J. Mol. Catal. A Chem., 216, 35, 10.1016/j.molcata.2004.01.008

Ansari, 2013, Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm, Nanoscale, 5, 9238, 10.1039/c3nr02678g