thumbnail

https://doi.org/10.1117/12.339824

 

 

 

Cơ quản chủ quản:  N/A

Lĩnh vực:

Các bài báo tiêu biểu

Support vector machines for hyperspectral remote sensing classification
Tập 3584 - Trang 221-232 - 1999
J. Anthony Gualtieri, Robert F. Cromp
The Support Vector Machine provides a new way to design classification algorithms which learn from examples (supervised learning) and generalize when applied to new data. We demonstrate its success on a difficult classification problem from hyperspectral remote sensing, where we obtain performances of 96%, and 87% correct for a 4 class problem, and a 16 class problem respectively. These results ar...... hiện toàn bộ