Stem Cell Research & Therapy

Công bố khoa học tiêu biểu

Sắp xếp:  
Comparative separation methods and biological characteristics of human placental and umbilical cord mesenchymal stem cells in serum-free culture conditions
Stem Cell Research & Therapy - Tập 11 - Trang 1-15 - 2020
Xiao Yi, Feng Chen, Fenghua Liu, Qing Peng, Yang Li, Shao Li, Jiang Du, Yi Gao, Yifeng Wang
Mesenchymal stem cells (MSCs) are considered to be an effective tool for regenerative medicine with promising applications for clinical therapy. However, incongruent data has been reported partially owing to their functional heterogeneity. To provide sufficient and suitable clinical seed cells derived from the placenta for MSC therapy, we compared the various current isolation methods, as well as the biological characteristics, of different human placenta mesenchymal stem cells (hPMSCs). We selected placentas from 35 informed donors and exploited three commonly used methods. MSCs were isolated from different parts of placental tissue including umbilical cord (UC), amniotic membrane (AM), chorionic membrane (CM), chorionic villi (CV), and deciduae (DC). The appropriate isolation methods for each type of hPMSCs were first assessed. The resulting five MSC types from the same individuals were identified based on their surface marker expression, proliferation capacity, transcriptome, differentiation, multipotency and karyotype. All three methods successfully isolated the five hPMSC types from placental tissues. However, the UC-MSCs were most effectively separated via the tissue explant method, while the enzymatic digestion method was found to be more suitable for separating CV-MSCs, owing to its higher output efficiency compared to the other methods. Alternatively, the perfusion method was complicated and exhibited the lowest efficiency for cell isolation and uniformity. Furthermore, we determined that UC-MSCs and CV-MSCs express a higher level of paracrine cytokines and display much stronger proliferative capacity as well as superior extraction efficiency. Finally, karyotype analysis revealed that DC-MSCs are derived from the mother, while the other cell types are derived from the fetus. Moreover, the different hPMSCs exhibited unique gene expression profiles, which may prove advantageous in treatment of a broad range of diseases. hPMSCs from different sources are similar yet also unique. Our results describe the biological characteristics of five hPMSCs and provide insights to aide in the selection process of candidates for MSCs treatment. Overall, UC- and CV-MSCs appear to be ideal sources of primary MSCs for clinical treatment and future research.
Detection of hepatic maturation by Raman spectroscopy in mesenchymal stromal cells undergoing hepatic differentiation
Stem Cell Research & Therapy - - 2016
Hao Wu, Jennifer H. Ho, Oscar K. Lee
Abstract Introduction Mesenchymal stromal cells (MSCs) are well known for their application potential in tissue engineering. We previously reported that MSCs are able to differentiate into hepatocytes in vitro. However, conventional methods for estimating the maturation of hepatic differentiation require relatively large amounts of cell samples. Raman spectroscopy (RS), a photonic tool for acquisition of cell spectra by inelastic scattering, has been recently used as a label-free single-cell detector for biological applications including phenotypic changes and differentiation of cells and diagnosis. In this study, RS is used to real-time monitor the maturation of hepatic differentiation in live MSCs. Methods The MSCs were cultured on the type I collagen pre-coating substrate and differentiated into hepatocytes in vitro using a two-step protocol. The Raman spectra at different time points are acquired in the range 400–3000 cm–1and analyzed by quantification methods and principle component analysis during hepatic differentiation from the MSCs. Results The intensity of the broad band in the range 2800–3000 cm–1 reflects the amount of glycogen within lipochrome in differentiated hepatocytes. A high correlation coefficient between the glycogen amount and hepatic maturation was exhibited. Moreover, principle component analysis of the Raman spectra from 400 to 3000 cm–1 indicated that MSC-derived hepatocytes were close to the primary hepatocytes and were distinct from the undifferentiated MSCs. Conclusions In summary, RS can serve as a rapid, non-invasive, real-time and label-free biosensor and reflects changes in live cell components during hepatic differentiation. The use of RS may thus facilitate the detection of hepatic differentiation and maturation in stem cells. Such an approach may substantially improve the feasibility as well as shorten the time required compared to the conventional molecular biology methods.
Molecular mechanisms of pluripotency and reprogramming
Stem Cell Research & Therapy - Tập 1 - Trang 1-8 - 2010
Jie Na, Jordan Plews, Jianliang Li, Patompon Wongtrakoongate, Timo Tuuri, Anis Feki, Peter W Andrews, Christian Unger
Pluripotent stem cells are able to form any terminally differentiated cell. They have opened new doors for experimental and therapeutic studies to understand early development and to cure degenerative diseases in a way not previously possible. Nevertheless, it remains important to resolve and define the mechanisms underlying pluripotent stem cells, as that understanding will impact strongly on future medical applications. The capture of pluripotent stem cells in a dish is bound to several landmark discoveries, from the initial culture and phenotyping of pluripotent embryonal carcinoma cells to the recent induction of pluripotency in somatic cells. On this developmental time line, key transcription factors, such as Oct4, Sox2 or Nanog, have been revealed not only to regulate but also to functionally induce pluripotency. These early master regulators of development control developmental signalling pathways that affect the cell cycle, regulate gene expression, modulate the epigenetic state and repair DNA damage. Besides transcription factors, microRNAs have recently been shown to play important roles in gene expression and are embedded into the regulatory network orchestrating cellular development. However, there are species-specific differences in pluripotent cells, such as surface marker expression and growth factor requirements. Such differences and their underlying developmental pathways require clear definition and have major impacts on the preclinical test bed of pluripotent cells.
Long-term culture of mesenchymal stem cells impairs ATM-dependent recognition of DNA breaks and increases genetic instability
Stem Cell Research & Therapy - Tập 10 - Trang 1-12 - 2019
Daniela Hladik, Ines Höfig, Ursula Oestreicher, Johannes Beckers, Martina Matjanovski, Xuanwen Bao, Harry Scherthan, Michael J. Atkinson, Michael Rosemann
Mesenchymal stem cells (MSCs) are attracting increasing interest for cell-based therapies, making use of both their immuno-modulating and regenerative potential. For such therapeutic applications, a massive in vitro expansion of donor cells is usually necessary to furnish sufficient material for transplantation. It is not established to what extent the long-term genomic stability and potency of MSCs can be compromised as a result of this rapid ex vivo expansion. In this study, we investigated the DNA damage response and chromosomal stability (indicated by micronuclei induction) after sub-lethal doses of gamma irradiation in murine MSCs at different stages of their in vitro expansion. Bone-marrow-derived tri-potent MSCs were explanted from 3-month-old female FVB/N mice and expanded in vitro for up to 12 weeks. DNA damage response and repair kinetics after gamma irradiation were quantified by the induction of γH2AX/53BP1 DSB repair foci. Micronuclei were counted in post-mitotic, binucleated cells using an automated image analyzer Metafer4. Involvement of DNA damage response pathways was tested using chemical ATM and DNA-PK inhibitors. Murine bone-marrow-derived MSCs in long-term expansion culture gradually lose their ability to recognize endogenous and radiation-induced DNA double-strand breaks. This impaired DNA damage response, indicated by a decrease in the number of γH2AX/53BP1 DSB repair foci, was associated with reduced ATM dependency of foci formation, a slower DNA repair kinetics, and an increased number of residual DNA double-strand breaks 7 h post irradiation. In parallel with this impaired efficiency of DNA break recognition and repair in older MSCs, chromosomal instability after mitosis increased significantly as shown by a higher number of micronuclei, both spontaneously and induced by γ-irradiation. Multifactorial regression analysis demonstrates that in vitro aging reduced DNA damage recognition in MSCs after irradiation by a multiplicative interaction with dose (p < 0.0001), whereas the increased frequency of micronuclei was caused by an additive interaction between in vitro aging and radiation dose. The detrimental impact of long-term in vitro expansion on DNA damage response of MSCs warrants a regular monitoring of this process during the ex vivo growth of these cells to improve therapeutic safety and efficiency.
hPMSCs inhibit the expression of PD-1 in CD4+IL-10+ T cells and mitigate liver damage in a GVHD mouse model by regulating the crosstalk between Nrf2 and NF-κB signaling pathway
Stem Cell Research & Therapy - Tập 12 - Trang 1-15 - 2021
Aiping Zhang, Jiashen Zhang, Xiaohua Li, Hengchao Zhang, Yanlian Xiong, Zhuoya Wang, Nannan Zhao, Feifei Wang, Xiying Luan
The activation of T cells and imbalanced redox metabolism enhances the development of graft-versus-host disease (GVHD). Human placenta-derived mesenchymal stromal cells (hPMSCs) can improve GVHD through regulating T cell responses. However, whether hPMSCs balance the redox metabolism of CD4+IL-10+ T cells and liver tissue and alleviate GVHD remains unclear. This study aimed to investigate the effect of hPMSC-mediated treatment of GVHD associated with CD4+IL-10+ T cell generation via control of redox metabolism and PD-1 expression and whether the Nrf2 and NF-κB signaling pathways were both involved in the process. A GVHD mouse model was induced using 6–8-week-old C57BL/6 and Balb/c mice, which were treated with hPMSCs. In order to observe whether hPMSCs affect the generation of CD4+IL-10+ T cells via control of redox metabolism and PD-1 expression, a CD4+IL-10+ T cell culture system was induced using human naive CD4+ T cells. The percentage of CD4+IL-10+ T cells and their PD-1 expression levels were determined in vivo and in vitro using flow cytometry, and Nrf2, HO-1, NQO1, GCLC, GCLM, and NF-κB levels were determined by western blotting, qRT-PCR, and immunofluorescence, respectively. Hematoxylin-eosin, Masson’s trichrome, and periodic acid-Schiff staining methods were employed to analyze the changes in hepatic tissue. A decreased activity of superoxide dismutase (SOD) and a proportion of CD4+IL-10+ T cells with increased PD-1 expression were observed in GVHD patients and the mouse model. Treatment with hPMSCs increased SOD activity and GCL and GSH levels in the GVHD mouse model. The percentage of CD4+IL-10+ T cells with decreased PD-1 expression, as well as Nrf2, HO-1, NQO1, GCLC, and GCLM levels, both in the GVHD mouse model and in the process of CD4+IL-10+ T cell generation, were also increased, but NF-κB phosphorylation and nuclear translocation were inhibited after treatment with hPMSCs, which was accompanied by improvement of hepatic histopathological changes. The findings suggested that hPMSC-mediated redox metabolism balance and decreased PD-1 expression in CD4+IL-10+ T cells were achieved by controlling the crosstalk between Nrf2 and NF-κB, which further provided evidence for the application of hPMSC-mediated treatment of GVHD.
Implantation of adipose-derived mesenchymal stem cell sheets promotes axonal regeneration and restores bladder function after spinal cord injury
Stem Cell Research & Therapy - Tập 13 - Trang 1-12 - 2022
Jiasheng Chen, Lin Wang, Meng Liu, Guo Gao, Weixin Zhao, Qiang Fu, Ying Wang
Cell-based therapy using adipose-derived mesenchymal stem cells (ADSCs) is a promising treatment strategy for neurogenic bladder (NB) associated with spinal cord injury (SCI). However, therapeutic efficacy is low because of inefficient cell delivery. Cell sheets improve the efficacy of cell transplantation. Therefore, this study was conducted to investigate the therapeutic efficacy of transplanting ADSC sheets into an SCI rat model and focused on the function and pathological changes of the bladder. ADSC sheets were prepared from adipose tissue of Sprague–Dawley (SD) rats using temperature-responsive cell culture dishes. Adult female SD rats were subjected to SCI by transection at the T10 level and administered ADSC sheets or gelatin sponge (the control group). Four and 8 weeks later, in vivo cystometrograms were obtained for voiding function assessment. Rats were sacrificed and the expression of various markers was analyzed in spinal and bladder tissues. The number of β-tubulin III-positive axons in the ADSC sheet transplantation group was higher than that in the control group. Conversely, expression of glial fibrillary acidic protein in the ADSC sheet transplantation group was lower than that in the control group. Cystometry showed impairment of the voiding function after SCI, which was improved after ADSC sheet transplantation with increased high-frequency oscillation activity. Furthermore, ADSC sheet transplantation prevented disruption of the bladder urothelium in SCI rats, thereby maintaining the intact barrier. Compared with fibrosis of the bladder wall in the control group, the ADSC sheet transplantation group had normal morphology of the bladder wall and reduced tissue fibrosis as shown by downregulation of type 1 collagen. ADSC sheet transplantation also resulted in strong upregulation of contractile smooth muscle cell (SMC) markers (α-smooth muscle actin and smoothelin) and downregulation of synthetic SMC markers (MYH10 and RBP1). ADSC sheet transplantation significantly improved voiding function recovery in rats after SCI. ADSC sheet transplantation is a promising cell delivery and treatment option for NB related to SCI.
GMP-grade neural progenitor derivation and differentiation from clinical-grade human embryonic stem cells
Stem Cell Research & Therapy - Tập 11 - Trang 1-10 - 2020
Loriana Vitillo, Catherine Durance, Zoe Hewitt, Harry Moore, Austin Smith, Ludovic Vallier
A major challenge for the clinical use of human pluripotent stem cells is the development of safe, robust and controlled differentiation protocols. Adaptation of research protocols using reagents designated as research-only to those which are suitable for clinical use, often referred to as good manufacturing practice (GMP) reagents, is a crucial and laborious step in the translational pipeline. However, published protocols to assist this process remain very limited. We adapted research-grade protocols for the derivation and differentiation of long-term neuroepithelial stem cell progenitors (lt-NES) to GMP-grade reagents and factors suitable for clinical applications. We screened the robustness of the protocol with six clinical-grade hESC lines deposited in the UK Stem Cell Bank. Here, we present a new GMP-compliant protocol to derive lt-NES, which are multipotent, bankable and karyotypically stable. This protocol resulted in robust and reproducible differentiation of several clinical-grade embryonic stem cells from which we derived lt-NES. Furthermore, GMP-derived lt-NES demonstrated a high neurogenic potential while retaining the ability to be redirected to several neuronal sub-types. Overall, we report the feasibility of derivation and differentiation of clinical-grade embryonic stem cell lines into lt-NES under GMP-compliant conditions. Our protocols could be used as a flexible tool to speed up translation-to-clinic of pluripotent stem cells for a variety of neurological therapies or regenerative medicine studies.
Shrimp miR-965 induced the human melanoma stem-like cell apoptosis and inhibited their stemness by disrupting the MCL-1-ER stress-XBP1 feedback loop in a cross-species manner
Stem Cell Research & Therapy - - 2020
Wenlin Wu, Chenxi Xu, Xiaobo Zhang, Yu An, Le Shu
AbstractBackgroundMelanoma is a type of aggressive skin cancer with a poor survival rate. The resistance to conventional therapy of this disease is, at least in part, attributed to its cancer stem cell population. However, the mechanism of survival and stemness maintenance of cancer stem cells remains to be investigated.MethodsTumorsphere formation assay was used to study the stem-like property of melanoma stem-like cells (MSLC). Chromatin immunoprecipitation (ChIP), promoter luciferase reporter assay were included for exploring the role of MCL-1 in MSLC and electrophoretic mobility shift assay were used to evaluate the interaction between shrimp miR-965 and human Ago2 protein. Melanoma xenograft nude mice were used to study the inhibition of tumor development.ResultsIn the present study, our results showed that myeloid cell leukemia sequence 1 (MCL-1) knocking down induced ER stress and apoptosis, and the expression reduction of stemness associated genes in MSLC, which implied a significant role of MCL-1 in MSLC. Further study indicated that ER stress agonist (tunicamycin) treatment in MSLC results in the translocation of XBP1, an ER stress sensor, into the nucleus to induce MCL-1 expression through direct binding to the − 313- to − 308-bp region of MCL-1 promoter. In addition, we found that a shrimp-derived miRNA (shrimp miR-965) could interact with the human Ago2 protein and suppressed the human MCL-1 expression by binding to the 3′ UTR of MCL-1 mRNA, thereby inhibiting the MSLC proliferation and stemness in vitro and in vivo in a cross-species manner.ConclusionIn conclusion, we identified an important role of MCL-1-ER stress-XBP1 feedback loop in the stemness and survival maintenance of MSLC, and shrimp miR-965, a natural food derived miRNA, could regulate MSLC stemness and survival by targeting MCL-1 and disrupting the balance of MCL-1-ER stress-XBP1 feedback loop. In conclusion, this study indicated an important mechanism of the regulation of MSLC stemness and survival, otherwise it also demonstrated the significance of cross-species-derived miRNA as promising natural drugs in melanoma therapy.
Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro
Stem Cell Research & Therapy - Tập 5 - Trang 1-13 - 2014
Lauren V Schnabel, Lynn M Pezzanite, Douglas F Antczak, M Julia Bevilaqua Felippe, Lisa A Fortier
The horse is a valuable species to assess the effect of allogeneic mesenchymal stromal cells (MSCs) in regenerative treatments. No studies to date have examined recipient response to major histocompatibility complex (MHC)-mismatched equine MSCs. The purposes of this study were to immunophenotype MSCs from horses of known MHC haplotype and to compare the immunogenicity of MSCs with differing MHC class II expression. MSCs and peripheral blood leukocytes (PBLs) were obtained from Thoroughbred horses (n = 10) of known MHC haplotype (ELA-A2, -A3, and -A9 homozygotes). MSCs were cultured through P8; cells from each passage (P2 to P8) were cryopreserved until used. Immunophenotyping of MHC class I and II, CD44, CD29, CD90, LFA-1, and CD45RB was performed by using flow cytometry. Tri-lineage differentiation assays were performed to confirm MSC multipotency. Recombinant equine IFN-γ was used to stimulate MHC class II negative MSCs in culture, after which expression of MHC class II was re-examined. To assess the ability of MHC class II negative or positive MSCs to stimulate an immune response, modified one-way mixed leukocyte reactions (MLRs) were performed by using MHC-matched and mismatched responder PBLs and stimulator PBLs or MSCs. Proliferation of gated CFSE-labeled CD3+ responder T cells was evaluated via CFSE attenuation by using flow cytometry and reported as the number of cells in the proliferating T-cell gate. MSCs varied widely in MHC class II expression despite being homogenous in terms of “stemness” marker expression and ability to undergo trilineage differentiation. Stimulation of MHC class II negative MSCs with IFN-γ resulted in markedly increased expression of MHC class II. MLR results revealed that MHC-mismatched MHC class II-positive MSCs caused significantly increased responder T-cell proliferation compared with MHC-mismatched MHC class II-negative and MHC-matched MSCs, and equivalent to that of the positive control of MHC-mismatched leukocytes. The results of this study suggest that MSCs should be confirmed as MHC class II negative before allogeneic application. Additionally, it must be considered that even MHC class II-negative MSCs could upregulate MHC class II expression if implanted into an area of active inflammation, as demonstrated with in vitro stimulation with IFN-γ.
Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells
Stem Cell Research & Therapy - - 2018
Ben Antebi, Luis Rodríguez, Kerfoot P. Walker, Amber M. Asher, Robin Kamucheka, Lucero Alvarado, Arezoo Mohammadipoor, Leopoldo C. Cancio
Tổng số: 2,771   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 278