Springer Science and Business Media LLC

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
A salt diapir-related Mississippi Valley-type deposit: the Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: fluid inclusion and isotope study
Springer Science and Business Media LLC - Tập 51 - Trang 749-780 - 2016
Salah Bouhlel, David L. Leach, Craig A. Johnson, Erin Marsh, Sihem Salmi-Laouar, David A. Banks
The Bou Jaber Ba-F-Pb-Zn deposit is located at the edge of the Bou Jaber Triassic salt diapir in the Tunisia Salt Diapir Province. The ores are unconformity and fault-controlled and occur as subvertical column-shaped bodies developed in dissolution-collapse breccias and in cavities within the Late Aptian platform carbonate rocks, which are covered unconformably by impermeable shales and marls of the Fahdene Formation (Late Albian–Cenomanian age). The host rock is hydrothermally altered to ankerite proximal to and within the ore bodies. Quartz, as fine-grained bipyramidal crystals, formed during hydrothermal alteration of the host rocks. The ore mineral assemblage is composed of barite, fluorite, sphalerite, and galena in decreasing abundance. The ore zones outline distinct depositional events: sphalerite-galena, barite-ankerite, and fluorite. Fluid inclusions, commonly oil-rich, have distinct fluid salinities and homogenization temperatures for each of these events: sphalerite-galena (17 to 24 wt% NaCl eq., and Th from 112 to 136 °C); ankerite-barite (11 to 17 wt% NaCl eq., and Th from 100 to 130 °C); fluorite (19 to 21 wt% NaCl eq., Th from 140 to 165 °C). The mean temperature of the ore fluids decreased from sphalerite (125 °C) to barite (115 °C) and increased during fluorite deposition (152 °C); then decreased to ∼110 °C during late calcite precipitation. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of fluid inclusions in fluorite are metal rich (hundreds to thousands ppm Pb, Zn, Cu, Fe) but the inclusions in barite are deficient in Pb, Zn, Cu, Fe. Inclusions in fluorite have Cl/Br and Na/Br ratios of several thousand, consistent with dissolution of halite while the inclusions analysed in barite have values lower than seawater which are indicative of a Br-enriched brine derived from evaporation plus a component of halite dissolution. The salinity of the barite-hosted fluid inclusions is less than obtained simply by the evaporation of seawater to halite saturation and requires a dilution of more than two times by meteoric water. The higher K/Na values in fluid inclusions from barite suggest that the brines interacted with K-rich rocks in the basement or siliciclastic sediments in the basin. Carbonate gangue minerals (ankerite and calcite) have δ13C and δ18O values that are close to the carbonate host rock and indicate fluid equilibrium between carbonate host rocks and hydrothermal brines. The δ34S values for sphalerite and galena fall within a narrow range (1 to 10 ‰) with a bulk value of 7.5 ‰, indicating a homogeneous source of sulfur. The δ34S values of barite are also relatively homogeneous (22 ‰), with 6 ‰ higher than the δ34S of local and regional Triassic evaporites (15 ‰). The latter are believed to be the source of sulfate. Temperature of deposition together with sulfur isotope data indicate that the reduced sulfur in sulfides was derived through thermochemical sulfate reduction of Triassic sulfate via hydrocarbons produced probably from Late Cretaceous source rocks. The 87Sr/86Sr ratio in the Bou Jaber barite (0.709821 to 0.711408) together with the lead isotope values of Bou Jaber galena (206Pb/204Pb = 18.699 to 18.737; 207Pb/204Pb = 15.635 to 15.708 and 208Pb/204Pb = 38.321 to 38.947) show that metals were extracted from homogeneous crustal source(s). The tectonic setting of the Bou Jaber ore deposit, the carbonate nature of the host rocks, the epigenetic style of the mineralization and the mineral associations, together with sulfur and oxygen isotope data and fluid inclusion data show that the Bou Jaber lead-zinc mineralization has the major characteristics of a salt diapir-related Mississippi Valley-type (MVT) deposit with superimposed events of fluorite and of barite deposition. Field relations are consistent with mineral deposition during the Eocene–Miocene Alpine orogeny from multiple hydrothermal events: (1) Zn-Pb sulfides formed by mixing of two fluids: one fluid metal-rich but reduced sulfur-poor and a second fluid reduced sulfur-rich; (2) barite precipitation involved the influx of a meteoric water component that mixed with a barium-rich fluid; and (3) fluorite precipitated from a highly saline fluid with higher temperatures.
Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China
Springer Science and Business Media LLC - Tập 49 - Trang 843-860 - 2014
Xiao-Cui Chen, Rui-Zhong Hu, Xian-Wu Bi, Hui-Min Li, Jiang-Bo Lan, Cheng-Hai Zhao, Jing-Jing Zhu
The Tengchong-Lianghe tin district in northwestern Yunnan, China, is an important tin mineralization area in the Sanjiang Tethyan Metallogenic Domain. There are three N–S trending granite belts in the Tengchong-Lianghe area, with emplacement ages ranging from Early Cretaceous to Late Cretaceous and Early Cenozoic. Tin mineralization is spatially associated with these granitic rocks. However, the petrogenetic link between the tin deposits and the host granites is not clear because of the lack of age data for the tin mineralization. We investigate the possibility of direct dating of cassiterite from three typical tin deposits in the Tengchong-Lianghe tin district, using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). In situ LA-MC-ICP-MS dating of seven cassiterite samples from the Lailishan (LLS-1 and LLS-2), Xiaolonghe (XLH, WDS, DSP, and HJS), and Tieyaoshan (TYS) tin deposits yielded well-defined 206Pb/207Pb–238U/207Pb isochron ages. To assess the accuracy of the in situ U/Pb dating of cassiterite, 40Ar/39Ar dating of coexisting muscovite (in samples LLS-1, DSP, and TYS) was also performed. The cassiterite in situ U/Pb ages (47.4 ± 2.0, 71.9 ± 2.3, and 119.3 ± 1.7 Ma, respectively) are in excellent agreement with the coexisting muscovite 40Ar/39Ar ages (48.4 ± 0.3, 71.9 ± 1.4, and 122.4 ± 0.7 Ma, respectively). The U/Pb ages of cassiterite combined with the 40Ar/39Ar ages of muscovite indicate that there are three tin mineralization events in this district: the Lailishan tin deposit at 47.4 ± 2.0 to 52 ± 2.7 Ma, the Xiaolonghe tin deposit at 71.6 ± 2.4 to 3.9 ± 2.0 Ma, and the Tieyaoshan tin deposit at 119.3 ± 1.7 to 122.5 ± 0.7 Ma. These ages are highly consistent with the zircon U/Pb ages of the host granites. It is su.ggested that the Cretaceous tin mineralization might have taken place in a subduction environment, while the Early Tertiary tin metallogenesis was in a postcollisional geodynamic setting.
A comparison of progressive hydrothermal carbonate alteration in Archean metabasalts and metaperidotites
Springer Science and Business Media LLC - Tập 25 - Trang 65-72 - 2013
J. F. Davies, R. E. Whitehead, J. Huang, S. Nawaratne
Because of major differences in both bulk chemical composition and silicate mineralogy between metabasalts and metaperidotites, valid comparison of the degree or intensity of carbonate alteration cannot be made in terms of weight per cent CO2. Molar CO2/CaO is preferred as an index of the intensity of carbonate alteration in metabasalts; molar CO2/CaO in carbonatized metabasalts is independent of CaO/MgO and only mildly sensitive to bulk composition and to the proportions of tremolite and clinozoisite. Molar CO2/CaO reflect the proportions of calcite and dolomite in metabasalts and the proportions of dolomite and magnesite in metaperidotites. However, neither molar CO2/CaO nor the proportions of dolomite and magnesite are reliable measures of carbonate alteration in metaperidotites of variable composition because both are strongly dependent on MgO/CaO in the whole rock. The preferred alteration index in metaperidotites is m CO2/m (CaO + MgO + FeO), which represents the proportion of total relevant cations that exist in carbonate form. An empirical equation relating molar CO2/CaO in metabasalts (x) and MCO2/m(CaO+MgO+FeO) in metaperidotites (y) is: y=0.16+0.30 x.
U-Th-Pb isotope systematics related to igneous rocks and ore Pb, Mount Isa, Queensland
Springer Science and Business Media LLC - Tập 9 - Trang 339-356 - 1974
R. B. Farquharson, J. R. Richards
This study is a search for a genetic relationship between Pb sulphide ore and igneous rocks in the region of Mount Isa, Queensland. The approach involves derivation of Pb isotope initial ratios by the whole-rock isochron method, and comparison of the initial ratios (Pb206/Pb204, Pb207/Pb204 and Pb208/Pb204) with the isotopic composition of the ore Pb. Data are reported for four igneous units; Kalkadoon granodiorite, Kalkadoon adamellite, Sybella granite and Eastern Creek volcanics. The results display considerable scatter for each of the units, and reveal the effects of recent surficial loss of U. The positioning of isochrons is aided by previous Rb-Sr geochronological data wherever possible. Comparison of initial ratios and ore Pb suggests that none of the igneous rock units is co-genetic with the ore deposit. Both phases of the Sybella Granite are more radiogenic and are apparently younger than the ore Pb. The Kalkadoon Granite is possibly related to the ore through some post-emplacement process of extraction and transport of Pb (e.g. by erosion or by anatectic magma generation) to the present site of the orebodies.
Lithospheric hydrous pyroxenites control localisation and Ni endowment of magmatic sulfide deposits
Springer Science and Business Media LLC - - Trang 1-10 - 2024
Isra S. Ezad, Daryl E. Blanks, Stephen F. Foley, David A. Holwell, Jason Bennett, Marco L. Fiorentini
Magmatic Ni–sulfide ore deposits are generally associated with basaltic to komatiitic igneous rocks that originate by partial melting of the mantle, which is usually modelled as a uniform four-phase peridotite. Existing models accept that the key metal contributors to mantle melts are olivine (Ni) and sulfide (Cu, platinum group elements (PGEs) and minor Ni). However, melting in the mantle commonly begins in volumetrically minor mantle assemblages such as hydrous pyroxenites that occur as veins in the peridotite mantle, which are rich in the hydrous minerals phlogopite, amphibole and apatite. The contribution of hydrous pyroxenites to the metal endowment of mantle melts may have been underestimated or overlooked in the past, partly because evidence of their input is partially erased as melting intensifies to involve peridotite. Here, we compile new results from experiments and natural rocks which demonstrate that the hydrous minerals such as phlogopite, amphiboles and apatite all have high partition coefficients for Ni (3–20) and may be important repositories for Ni in mantle sources of igneous rocks. This implies that hydrous minerals hosted in metasomatic mantle lithologies such as hydrous pyroxenites may be important contributors to some magmatic Ni–sulfide ore systems. Hydrous pyroxenites contain hydrous minerals in large modal abundances up to 30–40 vol% in addition to clinopyroxene and a few vol% of oxide phases, such as rutile and ilmenite. These mantle lithologies are commonly associated with cratonic and continental regions, where low-temperature, low-degree volatile-rich melts commonly modify lithospheric peridotite mantle, depositing variable hydrous pyroxenites. The lower melting temperatures of hydrous minerals in hydrous pyroxenite lithologies also means that the generation of magmatic ore deposits may not require a major thermal perturbation such as a plume, as the melting temperatures of hydrous pyroxenites lie around 300–350 °C lower than dry peridotites. Partial melts of hydrous pyroxenite are more voluminous at low temperatures than melts of peridotite would be. Furthermore, it is argued in the following that they would contain similar or even higher concentrations of Ni. Thus, predictive exploration models should consider domains of the lithospheric mantle where hydrous pyroxenites may be localised and concentrated, as they may have been episodically melted throughout the long-lived geological evolution of cratonic blocks, yielding Ni-rich melts that may be hosted in conduits of varying size and geometry at various crustal levels.
Society news
Springer Science and Business Media LLC - Tập 17 - Trang 312-312 - 1982
Reply to the comment by B. A. Hofmann
Springer Science and Business Media LLC - Tập 28 - Trang 285-286 - 1993
P. Wilde, M. S. Quinby-Hunt
Graphite deposits of Sri Lanka: a consequence of granulite facies metamorphism
Springer Science and Business Media LLC - Tập 22 - Trang 18-25 - 1987
M. B. Katz
The vein graphite deposits of Sri Lanka are located in a Precambrian high grade metamorphic terrain dominated by granulite facies rocks. The vein graphite has been interpreted as being of solid phase lateral secretion origin, derived by hydrothermal solutions or of biogenic origin. Based on what is known on the composition of the fluids under granulite facies conditions and the role of these fluids in their transport through the crust, the origin of the graphite is proposed to be the direct consequence of granulite facies metamorphism in the presence of a CO2 rich fluid under low fO2 conditions. This CO2 rich fluid could promote hydraulic fracturing and precipitation of vein graphite. Textures and structures of the vein graphite indicate syntectonic deposition by a crack-seal process under granulite facies metamorphic conditions. This model is supported by temperature estimates on graphite based on XRD data and stable carbon isotopes of graphite that suggest a deep-seated crustal origin.
Carbonate spots: understanding the relationship to gold mineralization in Central Victoria, southeastern Australia
Springer Science and Business Media LLC - Tập 44 - Trang 205-219 - 2008
Allison L. Dugdale, Christopher J. L. Wilson, Lawrence D. Leader, Jamie A. Robinson, L. Jonathon Dugdale
Historically, carbonate spots have been identified as an indicator of gold mineralization throughout central Victoria, Australia. However, the exact timing relationships between the growth of carbonates, development of deformation fabrics, and the introduction of gold has only been determined in more recent times through isolated studies on individual gold deposits. Detailed examination of the evolution of hydrothermal alteration associated with the Magdala gold deposit at Stawell recognized the fact that there were at least two generations of carbonate growth, an early rounded ankerite phase that predated gold mineralization and a later euhedral siderite phase coincident with gold mineralization. This pattern of carbonate growth is repeated in the majority of significant gold deposits, including Bendigo and Ballarat, throughout central Victoria. Timing relationships within the carbonates suggest that a fluid was introduced along bedding planes and early deformation fabrics prior to the main upright folding events that significantly modified the original sedimentary basin. It is suggested that the early rounded carbonates may have formed as a result of anaerobic oxidation of methane, derived from the sediments and advected along normal growth faults within the sedimentary basin, through interaction with downward diffusing seawater sulfate. Although the growth of the early carbonates is not related to gold mineralization, the change in the speciation of the carbonate during the later carbonate event is critical and can be tracked using a simple geochemical index that can be used not only in areas of outcrop but also in conjunction with exploration undercover.
Tổng số: 2,281   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10