Springer Science and Business Media LLC
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Expression and activation of toll-like receptor 3 and toll-like receptor 4 on human corneal epithelial and conjunctival fibroblasts
Springer Science and Business Media LLC - Tập 11 - Trang 1-10 - 2014
Toll-like receptors (TLRs) are recognized as important contributors to the initiation and modulation of the inflammatory response in the eye. This study investigated the precise expression patterns and functionality of TLRs in human corneal epithelial cells (HCE) and in conjunctival fibroblasts (HCF). The cell surface expression of TLRs 2-4, TLR7 and TLR9 in HCE and HCF was examined by flow cytometry with or without stimulation with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C). The mRNA expression of the TLRs was determined by real-time PCR. The protein content levels of interleukin (IL)-6, IL-8, IL-1β and tumor necrosis factor-α (TNF-α) were measured in HCE and HCF using multiplex fluorescent bead immunoassay (FBI). The surface expression of TLR3 and TLR4 was detected on both HCE and HCF. Following incubation with LPS, the percentage of HCE cells staining for TLR4 decreased from 10.18% to 0.62% (P < 0.001). Incubation with poly I:C lowered the percentage of HCE cells positive for TLR3 from 10.44% to 2.84% (P < 0.001). The mRNA expression of TLRs2, 4, 7 and 9 was detected in HCE only. Activation of HCE with LPS complex elicited protein secretion up to 4.51 ± 0.85-fold higher levels of IL-6 (P < 0.05), 2.5 ± 0.36-fold IL-8 (P > 0.05), 4.35 ± 1.12-fold IL-1β (P > 0.05) and 29.35 ± 2.3-fold TNFα (P < 0.05) compared to cells incubated in medium. HCF and HCE both express TLRs that respond to specific ligands by increasing cytokine expression. Following activation, the surface expression of TLR3 and TLR4 on HCE is decreased, thus creating a negative feedback loop, mitigating the effect of TLR activation.
Dry powder inhaled compound delivery for early pre-clinical in vivo efficacy studies
Springer Science and Business Media LLC - - 2013
Neutrophil extracellular traps and the dysfunctional innate immune response of cystic fibrosis lung disease: a review
Springer Science and Business Media LLC - Tập 14 - Trang 1-8 - 2017
Cystic Fibrosis (CF) is a devastating genetic disease characterised primarily by unrelenting lung inflammation and infection resulting in premature death and significant morbidity. Neutrophil Extracellular Traps (NETs) are possibly key to inflammation in the disease. This review aims to draw together existing research investigating NETs in the context of a dysfunctional innate immune system in CF. NETs have a limited anti-microbial role in CF and studies have shown they are present in higher numbers in CF airways and their protein constituents correlate with lung function decline. Innate immune system cells express CFTR and myeloid-specific CFTR KO mice have greater neutrophil recruitment and higher pro-inflammatory cytokine production to both sterile and bacterial inflammatory challenges. CFTR KO neutrophils have impaired anti-microbial capacity and intrinsic abnormalities in the pH of their cytoplasm, abnormal protein trafficking, increased neutrophil elastase and myeloperoxidase function, and decreased hypochlorite concentrations in their phagolysosomes. Furthermore, neutrophils from CF patients have less intrinsic apoptosis and may be therefore more likely to make NETs. CFTR KO macrophages have high intraphagolysosomal pH and increased toll-like receptor 4 on their cell surface membranes, which inhibit their anti-microbial capacity and render them hyper-responsive to inflammatory stimuli, respectively. Pharmacological treatments for CF target these intrinsic abnormalities of immune dysfunction. Emerging evidence suggests that the absence of CFTR from neutrophils affects NETosis and the interaction of NETs with macrophages. Current evidence suggests that NETs contribute to inflammation and lung destruction rather than working effectively in their anti-microbial capacity. Further studies focussing on the pro-inflammatory nature of NET constituents are required to identify the exact mechanistic role of NETs in CF and potential therapeutic interventions.
PPARα and PPARβ/δ are negatively correlated with proinflammatory markers in leukocytes of an obese pediatric population
Springer Science and Business Media LLC - Tập 17 Số 1 - Trang 1-13 - 2020
Obesity configures a pathophysiological profile that predisposes the development of metabolic and cardiovascular diseases, critically impacting public health. The chronic dysregulation of immuno-metabolic components triggered by pediatric obesity is a common but scarcely understood aspect of the disease. Peroxisome proliferator-activated receptors (PPARs) are a group of transcription factors essential for energy and immune homeostasis of different tissues. Besides, the glucagon-like peptide-1 receptor (GLP-1R) activation influences insulin secretion, but also regulates the cytokine profile possibly mediated through a PPAR isotype. However, the role of PPARs and GLP-1R in leukocytes from obese pediatric patients remains unclear. Therefore, we examined the expression of PPARs isotypes and GLP-1R in leukocytes, and its correlation with metabolic, hormonal, inflammatory, and anthropometric markers in an obese pediatric population. Obese children and adolescents presented a significant increase in anthropometric and body composition parameters, TG, VLDL, TG/HDL, android fat (%)/gynoid fat (%) (A/G%) index, and HOMA score when compared with the control group. Obese participants exhibited a pro-inflammatory profile with an augment of IL-8 (p = 0,0081), IL-6 (p = 0,0005), TNF-α (p = 0,0004), IFN-γ (p = 0,0110), MCP-1 (p = 0,0452), and adipsin (p = 0,0397), whereas displayed a reduction of adiponectin (p = 0,0452). The expression of PPARα and GLP-1R was lower in the leukocytes from obese participants than in lean subjects. Furthermore, PPARα correlates negatively with TNF-α (p = 0,0383), while GLP-1R did not show correlation with any inflammatory variable. However, both receptors correlate negatively with the abdominal skinfold. Although PPARβ/δ expression was similar between groups, it was negatively associated with IL-8 levels (p = 0,0085). PPARα and PPARβ/δ expression are negatively correlated with the proinflammatory markers TNF-α and IL-8, respectively, suggesting participation in the regulation of inflammation which was observed to be altered in pediatric obesity. Furthermore, PPARα and GLP-1R are downregulated in leukocytes from obese participants. The low expression of both receptors is correlated with an increase in abdominal skinfold, suggesting a role in fat distribution that could indirectly affect cytokine secretion from different immune and adipose cells, likely triggering an inflammatory profile as a consequence of obesity. Altogether, these findings may impact the understanding and implementation of PPARα or GLP-1R agonists in the clinic.
Effects of CpG Oligodeoxynucleotide 1826 on transforming growth factor-beta 1 and radiation-induced pulmonary fibrosis in mice
Springer Science and Business Media LLC - Tập 13 - Trang 1-7 - 2016
Cytosine-phosphate-guanine (CpG) oligodeoxyribonucleotides (ODNs) are synthetic DNA fragments containing unmethylated cytosine-guanine motifs with potential immune modulatory effects and have recently been suggested to enhance sensitivity to traditional therapies in lung cancer. This study aimed to examine the effects of CpG ODN1826 on transforming growth factor-beta 1(TGF-β1) and radiation-induced pulmonary fibrosis in mice. The radiation-induced pulmonary fibrosis mouse model was established by a single dose of 20 Gy, 6 MV X-rays exposure to the left lung. ICR mice were evenly randomized into four groups, comprising: a control group, a radiation group (RT group), a CpG group and a radiation combined with CpG ODN1826 group (RT + CpG group), with 40 mice in each group. CpG ODN1826 was intraperitoneally injected into mice at 1, 3, 5, 7 and 9 d post-irradiation. The mice were sacrificed at 1, 5, 15, 30 and 90 d post-irradiation. Paraffin sections of the radiated lung were subjected to H&E staining and Masson staining. The Ashcroft scale was used for quantitative histological analysis of fibrotic changes induced by irradiation. Concentrations of serum TGF-β1 were determined by ELISA, and concentrations of Hydroxyproline(Hyp) in the lung were determined with the alkaline hydrolysis method. Relative gene expression of FoxP3 was determined by real-time PCR. The radiation-induced pulmonary fibrosis mouse model was successfully established. The serum concentrations of TGF -β1 of RT group were higher than those of the RT + CpG group (t = 5.212, 7.126, 7.972 and 3.785, P < 0.05). The Hyp in the lung of RT group was higher than that of RT + CpG group (t = 4.606, P < 0.05). The relative expressions of FoxP3 gene in the lung of the RT group were higher than those of RT + CpG group (t = 8.395, 5.099 and 6.147, P < 0.05). CpG ODN1826 could reduce the serum concentrations of TGF-β1 and the lung content of Hyp in radiation-induced pulmonary fibrosis, which might be related to the possibility that CpG ODN1826 can reduce expression of the FoxP3 gene.
Protein kinase C promotes restoration of calcium homeostasis to platelet activating factor-stimulated human neutrophils by inhibition of phospholipase C
Springer Science and Business Media LLC - Tập 6 - Trang 1-9 - 2009
The role of protein kinase C (PKC) in regulating the activity of phospholipase C (PLC) in neutrophils activated with the chemoattractant, platelet-activating factor (PAF, 20 and 200 nM), was probed in the current study using the selective PKC inhibitors, GF10903X (0.5 - 1 μM) and staurosporine (400 nM). Alterations in cytosolic Ca2+, Ca2+ influx, inositol triphosphate (IP3), and leukotriene B4 production were measured using spectrofluorimetric, radiometric and competitive binding radioreceptor and immunoassay procedures, respectively. Activation of the cells with PAF was accompanied by an abrupt increase in cytosolic Ca2+ followed by a gradual decline towards basal levels. Pretreatment of neutrophils with the PKC inhibitors significantly increased IP3 production with associated enhanced Ca2+ release from storage vesicles, prolongation of the peak cytosolic Ca2+ transients, delayed clearance and exaggerated reuptake of the cation, and markedly increased synthesis of LTB4. The alterations in Ca2+ fluxes observed with the PKC inhibitors were significantly attenuated by U73122, a PLC inhibitor, as well as by cyclic AMP-mediated upregulation of the Ca2+-resequestering endomembrane ATPase. Taken together, these observations are compatible with a mechanism whereby PKC negatively modulates the activity of PLC, with consequent suppression of IP3 production and down-regulation of Ca2+ mediated pro-inflammatory responses of PAF-activated neutrophils. Although generally considered to initiate and/or amplify intracellular signalling cascades which activate and sustain the pro-inflammatory activities of neutrophils and other cell types, the findings of the current study have identified a potentially important physiological, anti-inflammatory function for PKC, at least in neutrophils.
Topical anti-inflammatory activity of Polygonum cuspidatum extract in the TPA model of mouse ear inflammation
Springer Science and Business Media LLC - Tập 5 - Trang 1-7 - 2008
This study tested the ability of a characterized extract of Polygonum cuspidatum (PCE) to inhibit mouse ear inflammation in response to topical application of 12-O- tetradecanoylphorbol-13-acetate (TPA). A 50% (wt:vol) ethanolic solution of commercial 200:1 PCE was applied to both ears of female Swiss mice (n = 8) at 0.075, 0.15, 0.3, 1.25 and 2.5 mg/ear 30 min after TPA administration (2 μg/ear). For comparison, 3 other groups were treated with TPA and either 1) the vehicle (50% ethanol) alone, 2) indomethacin (0.5 mg/ear), or 3) trans-resveratrol (0.62 mg/ear). Ear thickness was measured before TPA and at 4 and 24 h post-TPA administration to assess ear edema. Ear punch biopsies were collected at 24 h and weighed as a second index of edema. Myeloperoxidase activity was measured in each ear punch biopsy to assess neutrophil infiltration. PCE treatment at all doses significantly reduced ear edema compared to the TPA control. The PCE response was dose-dependent and 2.5 mg PCE significantly inhibited all markers of inflammation to a greater extent than indomethacin (0.5 mg). MPO activity was inhibited at PCE doses ≥ 1.25 mg/ear. Trans- resveratrol inhibited inflammation at comparable doses. PCE inhibits development of edema and neutrophil infiltration in the TPA-treated mouse ear model of topical inflammation.
LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and Giα dependent PI-3kinase signalling
Springer Science and Business Media LLC - Tập 9 - Trang 1-7 - 2012
COPD is a disease of innate immunity and bacterial infections are a dominant cause of exacerbations in the later stages resulting in poor health and high mortality. The pathogen-associated molecular pattern (PAMP) lipopolysaccharide (LPS) is sensed by immune cells through activation of the toll-like receptor 4 (TLR4). This leads to the activation of NADPH oxidase (NOX) and NF-κB which together drive COPD inflammation. In this study we show in human PBMCs that LPS stimulated proinflammatory cytokine release (CXCL8 and IL6) was inhibited by approximately 50% by the broad specificity phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin. Our results also demonstrate that activation of PI3K following LPS stimulation is mediated by a NOX4 dependent mechanism releasing endogenous H2O2, as the NOX4 inhibitor apocynin blocked LPS induced AKT phosphorylation. Moreover, LPS-induced PI3K activation was inhibited by the anti-oxidant N-acetylcysteine in a concentration dependent manner (IC50 ~100 μM). In addition, our data demonstrated that inhibition of small G proteins, by pre-treatment with pertussis toxin, inhibited LPS-induced AKT phosphorylation. Furthermore, the G-protein inhibitors pertussis toxin and mastoparan both inhibited LPS-induced CXCL8 and IL-6 release by approximately 50%. Together, these data indicate there is a mechanism in human PBMCs where TLR4 activation by LPS leads to ROS generation through NOX4 and activation of the PI3K pathway. This effect is apparently mediated through small G proteins facilitating the release of pro-inflammatory cytokines.
Inhibition of NFκB by the natural product Withaferin A in cellular models of Cystic Fibrosis inflammation
Springer Science and Business Media LLC - Tập 6 - Trang 1-5 - 2009
Cystic Fibrosis (CF) is one of the most common autosomal genetic disorders in humans. This disease is caused by mutations within a single gene, coding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The phenotypic hallmark of CF is chronic lung infection and associated inflammation from opportunistic microbes such as Pseudomonas aeruginosa (PA), Haemophilus influenzae, and Staphylococcus aureus. This eventually leads to deterioration of lung function and death in most CF patients. Unfortunately, there is no approved therapy for correcting the genetic defect causal to the disease. Hence, controlling inflammation and infection in CF patients are critical to disease management. Accordingly, anti-inflammatory agents and antibiotics are used to manage chronic inflammation and infection in CF patients. However, most of the anti-inflammatory agents in CF have severe limitations due to adverse side effects, and resistance to antibiotics is becoming an even more prominent problem. Thus, new agents that can be used to control chronic inflammation in CF are needed in the absence of a cure for the disease. Activation of the transcription factor NFκB through Toll-like receptors (TLR) following bacterial infection is principally involved in regulating lung inflammation in CF. NFκB regulates the transcription of several genes that are involved in inflammation, anti-apoptosis and anti-microbial activity, and hyper-activation of this transcription factor leads to a potent inflammatory response. Thus, NFκB is a potential anti-inflammatory drug target in CF. Screening of several compounds from natural sources in an in vitro model of CF-related inflammation wherein NFκB is activated by filtrates of a clinically isolated strain of PA (PAF) led us to Withaferin A (WFA), a steroidal lactone from the plant Withania Somnifera L. Dunal. Our data demonstrate that WFA blocks PAF-induced activation of NFκB as determined using reporter assays, IL-8 measurements and high-content fluorescent imaging of NFκB subunit p65 translocation. Since the airways of CF patients can be specifically targeted for delivery of therapeutics, we propose that WFA should be further studied as an anti-inflammatory agent in models of CF related inflammation mediated by NFκB.
Antioxidant and anti-inflammatory effects of selenium in oral buccal mucosa and small intestinal mucosa during intestinal ischemia-reperfusion injury
Springer Science and Business Media LLC - Tập 11 Số 1 - 2014
Tổng số: 493
- 1
- 2
- 3
- 4
- 5
- 6
- 10