Springer Science and Business Media LLC
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Geochemical aspects of some accumulation models for primary magmas
Springer Science and Business Media LLC - Tập 93 - Trang 449-458 - 1986
The compositions of primary magmas depend to some degree on the dynamic processes occurring in the partially molten region of the mantle. The compositional dependence is estimated for three models which assume either accumulation from a migmatized source region or accumulation entirely by the interstitial flow of magma. Accumulation from a migmatised region results in magmas with higher concentrations of incompatible elements than does batch melting, whereas accumulation by interstitial flow results in magmas with lower concentrations of these elements. The concentrations of refractory elements are almost independent of both the accumulation process and the degree of partial melting and are therefore usefull for the identification of primary magmas.
Density changes during the fractional crystallization of basaltic magmas: fluid dynamic implications
Springer Science and Business Media LLC - Tập 85 - Trang 300-309 - 1984
The dynamical behaviour of basaltic magma chambers is fundamentally controlled by the changes that occur in the density of magma as it crystallizes. In this paper the term fractionation density is introduced and defined as the ratio of the gram formula weight to molar volume of the chemical components in the liquid phase that are being removed by fractional crystallization. Removal of olivine and pyroxene, whose values of fractionation density are larger than the density of the magma, causes the density of residual liquid to decrease. Removal of plagioclase, with fractionation density less than the magma density, can cause the density of residual liquid to increase. During the progressive differentiation of basaltic magma, density decreases during fractionation of olivine, olivine-pyroxene, and pyroxene assemblages. When plagioclase joins these mafic phases magma density can sometimes increase leading to a density minimum. Calculations of melt density changes during fractionation show that compositional effects on density are usually greater than associated thermal effects. In the closed-system evolution of basaltic magma, several stages of distinctive fluid dynamical behaviour can be recognised that depend on the density changes which accompany crystallization, as well as on the geometry of the chamber. In an early stage of the evolution, where olivine and/or pyroxenes are the fractionating phases, compositional stratification can occur due to side-wall crystallization and replenishment by new magma, with the most differentiated magma tending to accumulate at the roof of the chamber. When plagioclase becomes a fractionating phase a zone of well-mixed magma with a composition close to the density minimum of the system can form in the chamber. The growth of a zone of constant composition destroys the stratification in the chamber. A chamber of well-mixed magma is maintained while further differentiation occurs, unless the walls of the chamber slope inwards, in which case dense boundary layer flows can lead to stable stratification of cool, differentiated magma at the floor of the chamber. In a basaltic magma chamber replenished by primitive magma, the new magma ponds at the base and evolves until it reaches the same density and composition as overlying magma. Successive cycles of replenishment of primitive magma can also form compositional zonation if successive cycles occur before internal thermal equilibrium is reached in a chamber. In a chamber containing well-mixed, plagioclase — saturated magma, the primitive magma can be either denser or lighter than the resident magma. In the first case, the new magma ponds at the base and fractionates until it reaches the same density as the evolved magma. Mixing then occurs between magmas of different temperatures and compositions. In the second case a turbulent plume is generated that causes the new magma to mix immediately with the resident magma.
Geochronology of zircon megacrysts from nepheline-bearing gneisses as constraints on tectonic setting: implications for resetting of the U-Pb and Lu-Hf isotopic systems
Springer Science and Business Media LLC - Tập 153 - Trang 389-403 - 2006
Nepheline-bearing gneisses from the 75 km2 Tambani body in the Mozambique Belt of southern Malawi, are miaskitic biotite-nepheline monzodiorites, reflecting an absence of K-feldspar, alkali amphiboles or pyroxenes, and contain euhedral zircon megacrysts up to 5 cm across. The zircons contain U = 1–1,860 ppm, Th = 0–2,170 ppm and Y = 400–1,100 ppm, and very low concentrations of all other measured trace elements except Hf (HfO2 = 0.53–0.92 wt. %). Cathodoluminescence images reveal oscillatory sector growth zoning and no evidence for xenocrystic cores, indicating that the zircons represent primary magmatic crystallization products that have survived amphibolite grade metamorphism. U-Pb isotopic analyses (by TIMS) yield an upper intercept age of 730 ± 4 Ma (MSWD = 1.7), which we interpret as the time of magmatic crystallization of the zircons. This is coincident with 11 SHRIMP spot analyses, which yield a mean age of 729 ± 7 Ma (MSWD = 0.37). Metamorphism, at 522 ± 17 Ma as suggested by monazite, caused partial Pb-loss during local recrystallization of zircon. Lu-Hf isotopic data for three whole-rock samples of nepheline-bearing gneiss are collinear with those for zircon megacrysts, and correspond to an age of 584 ± 17 Ma (MSWD = 0.37. We interpret the Lu-Hf array to represent a mixing line defined by the Hf isotopic signature of primary zircon and that of the rock-forming minerals reset during metamorphic (re-)crystallization; hence the 584 Ma age is likely geologically meaningless. Given the well-defined association of nepheline syenites (and phonolitic volcanic equivalents) with continental rifting, we suggest that the Tambani body represents a magmatic product formed at 730 Ma during the break-up of the Rodinia supercontinent. The 522 Ma age is akin to other Pan-African metamorphic ages that record collisional suturing events during the final assembly of Gondwana. Zircon-bearing nepheline gneisses thus preserve a record of intra-continental rifting and of continental collision in southern Malawi.
Ti-rich komatiites from northern Norway
Springer Science and Business Media LLC - Tập 105 - Trang 42-54 - 1990
Komatiites of the Karasjok Greenstone Belt, northern Norway, show two unusual features: they have certain compositional differences compared with other komatiites, and they are largely volcaniclastic in origin. Their geological setting suggests that the komatiites were crupted into shallow water, thus permitting phreatomagmatic eruption, in a small ocean basin that opened in the Baltic Shield. The major oxides (except for TiO2), the trace elements Y, Sc, V, heavy rare earth elements (HREE), Cr, Co, Ni and the platinum group elements (PGE) cover similar ranges to those observed in other komatiites, but TiO2, Sm, Zr and Hf (Ti-associated elements, TAE) are enriched compared with abundances commonly reported for komatiites. Thus, the Karasjok komatiites have interelement ratios 2 to 3 times greater than chondritic between the TAE and the HREE, PGE, Sc, V, Y, Al (HRE-associated elements, HAE). The light rare earth elements (LREE), Ta and Th are enriched in some samples relative to Ti, Sm, Zr, and Hf, but are depleted in others. One group of rocks that is similar to the Karasjok komatiites both in terms of geological setting and geochemistry is the Baffin Bay picrites. The reason for the high concentrations of TAE in the Karasjok komatiites could be that they formed at lower degrees of partial melting than most komatiites. The greater-than-chondritic TAE/HAE ratios indicate that garnet was a residual phase during their formation, requiring that the melt formed at a pressure greater than 40 kb. A model involving decompression melting of a mantle plume rising in a rifting environment, can explain the main features of the Karasjok komatiites.
Initiation of large-volume silicic centers in the Yellowstone hotspot track: insights from H2O- and F-rich quartz-hosted rhyolitic melt inclusions in the Arbon Valley Tuff of the Snake River Plain
Springer Science and Business Media LLC - - 2016
Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts
Springer Science and Business Media LLC - Tập 148 - Trang 542-565 - 2004
Mt. Shasta andesite and dacite lavas contain high MgO (3.5–5 wt.%), very low FeO*/MgO (1–1.5) and 60–66 wt.% SiO2. The range of major and trace element compositions of the Shasta lavas can be explained through fractional crystallization (~50–60 wt.%) with subsequent magma mixing of a parent magma that had the major element composition of an H2O-rich primitive magnesian andesite (PMA). Isotopic and trace element characteristics of the Mt. Shasta stratocone lavas are highly variable and span the same range of compositions that is found in the parental basaltic andesite and PMA lavas. This variability is inherited from compositional variations in the input contributed from melting of mantle wedge peridotite that was fluxed by a slab-derived, fluid-rich component. Evidence preserved in phenocryst assemblages indicates mixing of magmas that experienced variable amounts of fractional crystallization over a range of crustal depths from ~25 to ~4 km beneath Mt. Shasta. Major and trace element evidence is also consistent with magma mixing. Pre-eruptive crystallization extended from shallow crustal levels under degassed conditions (~4 wt.% H2O) to lower crustal depths with magmatic H2O contents of ~10–15 wt.%. Oxygen fugacity varied over 2 log units from one above to one below the Nickel-Nickel Oxide buffer. The input of buoyant H2O-rich magmas containing 10–15 wt.% H2O may have triggered magma mixing and facilitated eruption. Alternatively, vesiculation of oversaturated H2O-rich melts could also play an important role in mixing and eruption.
Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity
Springer Science and Business Media LLC - Tập 164 - Trang 317-339 - 2012
The water-saturated phase relations have been determined for a primitive magnesian andesite (57 wt% SiO2, 9 wt% MgO) from the Mt. Shasta, CA region over the pressure range 200–800 MPa, temperature range of 915–1,070 °C, and oxygen fugacities varying from the nickel–nickel oxide (NNO) buffer to three log units above NNO (NNO+3). The phase diagram of a primitive basaltic andesite (52 wt% SiO2, 10.5 wt% MgO) also from the Mt. Shasta region (Grove et al. in Contrib Miner Petrol 145:515–533; 2003) has been supplemented with additional experimental data at 500 MPa. Hydrous phase relations for these compositions allow a comparison of the dramatic effects of dissolved H2O on the crystallization sequence. Liquidus mineral phase stability and appearance temperatures vary sensitively in response to variation in pressure and H2O content, and this information is used to calibrate magmatic barometers-hygrometers for primitive arc magmas. H2O-saturated experiments on both compositions reveal the strong dependence of amphibole stability on the partial pressure of H2O. A narrow stability field is identified where olivine and amphibole are coexisting phases in the primitive andesite composition above 500 MPa and at least until 800 MPa, between 975–1,025 °C. With increasing H2O pressure (
$${P}_{\text {H}_2{\rm O}}$$
), the temperature difference between the liquidus and amphibole appearance decreases, causing a change in chemical composition of the first amphibole to crystallize. An empirical calibration is proposed for an amphibole first appearance barometer-hygrometer that uses Mg# of the amphibole and
$$f_{\text {O}_2}$$
:
$$ P_{\text{H}_{2}{\rm O}}({\rm MPa})=\left[{\frac{{\rm Mg\#}}{52.7}}-0.014 * \Updelta {\rm NNO}\right]^{15.12} $$
This barometer gives a minimum
$${P}_{\text{H}_{2}{\rm O}}$$
recorded by the first appearance of amphibole in primitive arc basaltic andesite and andesite. We apply this barometer to amphibole antecrysts erupted in mixed andesite and dacite lavas from the Mt. Shasta, CA stratocone. Both high H2O pressures (500–900 MPa) and high pre-eruptive magmatic H2O contents (10–14 wt% H2O) are indicated for the primitive end members of magma mixing that are preserved in the Shasta lavas. We also use these new experimental data to explore and evaluate the empirical hornblende barometer of Larocque and Canil (2010).
Nontronit und Pieotit aus dem Basalt des �lberges bei Hundsangen, Westerwald
Springer Science and Business Media LLC - - 1960
Oxygen isotope constraints on the petrogenesis of the Sybille intrusion of the Proterozoic Laramie Anorthosite Complex
Springer Science and Business Media LLC - - 1999
Geochemistry of the Adamello massif (northern Italy)
Springer Science and Business Media LLC - Tập 80 - Trang 41-48 - 1982
The Tertiary Adamello massif, outcropping over an area of more than 550 km2 in the southern Alps (northern Italy) is composed mainly of granitoid rocks (granodiorite, tonalite, quartz diorite) with minor amounts of diorite and gabbro. The major and trace element composition of these rocks is comparable to calc-alkaline volcanic rocks of continental margins. The granitoid rocks display spatial and temporal variations in their composition, particularly in Na, P, Sr, La, Nb and Y contents and 87Sr/86Sr ratios. The variations were probably produced by concurrent contamination/wall-rock assimilation and fractional crystallization of high-alumina basaltic magma.
Tổng số: 4,805
- 1
- 2
- 3
- 4
- 5
- 6
- 10