Springer Science and Business Media LLC
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Combined lp and quasi-Newton methods for minimax optimization
Springer Science and Business Media LLC - Tập 20 - Trang 49-62 - 1981
We present an algorithm for minimax optimization that combines LP methods and quasi-Newton methods. The quasi-Newton algorithm is used only if an irregular solution is detected, in which case second-order derivative information is needed in order to obtain a fast final rate of convergence. We prove that the algorithm can converge only to a stationary point and that normally the final rate of convergence will be either quadratic or superlinear. The performance is illustrated through some numerical examples.
A note on the existence of the Alizadeh-Haeberly-Overton direction for semidefinite programming
Springer Science and Business Media LLC - - 1997
Stationarity conditions and constraint qualifications for mathematical programs with switching constraints
Springer Science and Business Media LLC - Tập 181 - Trang 149-186 - 2019
In optimal control, switching structures demanding at most one control to be active at any time instance appear frequently. Discretizing such problems, a so-called mathematical program with switching constraints is obtained. Although these problems are related to other types of disjunctive programs like optimization problems with complementarity or vanishing constraints, their inherent structure makes a separate consideration necessary. Since standard constraint qualifications are likely to fail at the feasible points of switching-constrained optimization problems, stationarity notions which are weaker than the associated Karush–Kuhn–Tucker conditions need to be investigated in order to find applicable necessary optimality conditions. Furthermore, appropriately tailored constraint qualifications need to be formulated. In this paper, we introduce suitable notions of weak, Mordukhovich-, and strong stationarity for mathematical programs with switching constraints and present some associated constraint qualifications. Our findings are exploited to state necessary optimality conditions for (discretized) optimal control problems with switching constraints. Furthermore, we apply our results to optimization problems with either-or-constraints. First, a novel reformulation of such problems using switching constraints is presented. Second, the derived surrogate problem is exploited to obtain necessary optimality conditions for the original program.
Sparse PCA on fixed-rank matrices
Springer Science and Business Media LLC - Tập 198 Số 1 - Trang 139-157 - 2023
A unified exact method for solving different classes of vehicle routing problems
Springer Science and Business Media LLC - Tập 120 - Trang 347-380 - 2008
This paper presents a unified exact method for solving an extended model of the well-known Capacitated Vehicle Routing Problem (CVRP), called the Heterogenous Vehicle Routing Problem (HVRP), where a mixed fleet of vehicles having different capacities, routing and fixed costs is used to supply a set of customers. The HVRP model considered in this paper contains as special cases: the Single Depot CVRP, all variants of the HVRP presented in the literature, the Site-Dependent Vehicle Routing Problem (SDVRP) and the Multi-Depot Vehicle Routing Problem (MDVRP). This paper presents an exact algorithm for the HVRP based on the set partitioning formulation. The exact algorithm uses three types of bounding procedures based on the LP-relaxation and on the Lagrangean relaxation of the mathematical formulation. The bounding procedures allow to reduce the number of variables of the formulation so that the resulting problem can be solved by an integer linear programming solver. Extensive computational results over the main instances from the literature of the different variants of HVRPs, SDVRP and MDVRP show that the proposed lower bound is superior to the ones presented in the literature and that the exact algorithm can solve, for the first time ever, several test instances of all problem types considered.
Linear max-min programming
Springer Science and Business Media LLC - Tập 20 - Trang 166-172 - 1981
Theoretical aspects of the programming problem of maximizing the minimum value of a set of linear functionals subject to linear constraints are explored. Solution strategies are discussed and an optimality condition is developed. An algorithm is also presented.
Pareto Adaptive Robust Optimality via a Fourier–Motzkin Elimination lens
Springer Science and Business Media LLC - - Trang 1-54 - 2023
We formalize the concept of Pareto Adaptive Robust Optimality (PARO) for linear two-stage Adaptive Robust Optimization (ARO) problems, with fixed continuous recourse. A worst-case optimal solution pair of here-and-now decisions and wait-and-see decisions is PARO if it cannot be Pareto dominated by another solution, i.e., there does not exist another worst-case optimal pair that performs at least as good in all scenarios in the uncertainty set and strictly better in at least one scenario. We argue that, unlike PARO, extant solution approaches—including those that adopt Pareto Robust Optimality from static robust optimization—could fail in ARO and yield solutions that can be Pareto dominated. The latter could lead to inefficiencies and suboptimal performance in practice. We prove the existence of PARO solutions, and present approaches for finding and approximating such solutions. Amongst others, we present a constraint & column generation method that produces a PARO solution for the considered two-stage ARO problems by iteratively improving upon a worst-case optimal solution. We present numerical results for a facility location problem that demonstrate the practical value of PARO solutions. Our analysis of PARO relies on an application of Fourier–Motzkin Elimination as a proof technique. We demonstrate how this technique can be valuable in the analysis of ARO problems, besides PARO. In particular, we employ it to devise more concise and more insightful proofs of known results on (worst-case) optimality of decision rule structures.
New analysis of linear convergence of gradient-type methods via unifying error bound conditions
Springer Science and Business Media LLC - Tập 180 - Trang 371-416 - 2019
This paper reveals that a common and central role, played in many error bound (EB) conditions and a variety of gradient-type methods, is a residual measure operator. On one hand, by linking this operator with other optimality measures, we define a group of abstract EB conditions, and then analyze the interplay between them; on the other hand, by using this operator as an ascent direction, we propose an abstract gradient-type method, and then derive EB conditions that are necessary and sufficient for its linear convergence. The former provides a unified framework that not only allows us to find new connections between many existing EB conditions, but also paves a way to construct new ones. The latter allows us to claim the weakest conditions guaranteeing linear convergence for a number of fundamental algorithms, including the gradient method, the proximal point algorithm, and the forward–backward splitting algorithm. In addition, we show linear convergence for the proximal alternating linearized minimization algorithm under a group of equivalent EB conditions, which are strictly weaker than the traditional strongly convex condition. Moreover, by defining a new EB condition, we show Q-linear convergence of Nesterov’s accelerated forward–backward algorithm without strong convexity. Finally, we verify EB conditions for a class of dual objective functions.
Extended formulations from communication protocols in output-efficient time
Springer Science and Business Media LLC - Tập 183 - Trang 41-59 - 2020
Deterministic protocols are well-known tools to obtain extended formulations, with many applications to polytopes arising in combinatorial optimization. Although constructive, those tools are not output-efficient, since the time needed to produce the extended formulation also depends on the number of rows of the slack matrix (hence, on the exact description in the original space). We give general sufficient conditions under which those tools can be implemented as to be output-efficient, showing applications to e.g. Yannakakis’ extended formulation for the stable set polytope of perfect graphs, for which, to the best of our knowledge, an efficient construction was previously not known. For specific classes of polytopes, we give also a direct, efficient construction of extended formulations arising from protocols. Finally, we deal with extended formulations coming from unambiguous non-deterministic protocols.
Existence of efficient and properly efficient solutions to problems of constrained vector optimization
Springer Science and Business Media LLC - Tập 190 - Trang 259-283 - 2020
The paper is devoted to the existence of global optimal solutions for a general class of nonsmooth problems of constrained vector optimization without boundedness assumptions on constraint set. The main attention is paid to the two major notions of optimality in vector problems: Pareto efficiency and proper efficiency in the sense of Geoffrion. Employing adequate tools of variational analysis and generalized differentiation, we first establish relationships between the notions of properness, M-tameness, and the Palais–Smale conditions formulated for the restriction of the vector cost mapping on the constraint set. These results are instrumental to derive verifiable necessary and sufficient conditions for the existence of Pareto efficient solutions in vector optimization. Furthermore, the developed approach allows us to obtain new sufficient conditions for the existence of Geoffrion-properly efficient solutions to such constrained vector problems.
Tổng số: 3,383
- 1
- 2
- 3
- 4
- 5
- 6
- 339