Springer Science and Business Media LLC

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Characterization of Family D DNA polymerase from Thermococcus sp. 9°N
Springer Science and Business Media LLC - - 2014
Lucia Greenough, Julie F. Menin, Nirav S. Desai, Zvi Kelman, Andrew F. Gardner
Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3′–5′ exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3′–5′ exonuclease proofreading activity, polD has a relatively high error rate (95 × 10−5) compared to polB (19 × 10−5) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.
Bacteriophage in polar inland waters
Springer Science and Business Media LLC - Tập 12 - Trang 167-175 - 2008
Christin Säwström, John Lisle, Alexandre M. Anesio, John C. Priscu, Johanna Laybourn-Parry
Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.
Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity
Springer Science and Business Media LLC - Tập 5 Số 6 - Trang 399-408 - 2001
Sabine Riessen, Garabed Antranikian
Characterization of a cryptic plasmid from a Greenland ice core Arthrobacter isolate and construction of a shuttle vector that replicates in psychrophilic high G+C Gram-positive recipients
Springer Science and Business Media LLC - - 2008
Vanya Miteva, Sarah Lantz, Jean Brenchley
Over 60 Greenland glacial isolates were screened for plasmids and antibiotic resistance/sensitivity as the first step in establishing a genetic system. Sequence analysis of a small, cryptic, 1,950 bp plasmid, p54, from isolate GIC54, related to Arthrobacter agilis, showed a region similar to that found in theta replicating Rhodococcus plasmids. A 6,002 bp shuttle vector, pSVJ21, was constructed by ligating p54 and pUC18 and inserting a chloramphenicol acetyl transferase (CAT) cassette conferring chloramphenicol resistance. Candidate Gram-positive recipients were chosen among glacial isolates based on phylogenetic relatedness, relatively short doubling times at low temperatures, sensitivity to antibiotics, and absence of indigenous plasmids. We developed an electroporation protocol and transformed seven isolates related to members of the Arthrobacter, Microbacterium, Curtobacterium, and Rhodoglobus genera with pSVJ21. Plasmid stability was demonstrated by successive transformation into Escherichia coli and four Gram-positive isolates, growth without antibiotic, and plasmid re-isolation. This shuttle vector and our transformation protocol provide the basis for genetic experiments with different high G+C Gram-positive hosts to study cold adaptation and expression of cold-active enzymes at low temperatures.
Thermoanaerobacterium thermostercus sp. nov., a new anaerobic thermophilic hydrogen-producing bacterium from buffalo-dung
Springer Science and Business Media LLC - Tập 14 - Trang 233-240 - 2010
Ida Romano, Laura Dipasquale, Pierangelo Orlando, Licia Lama, Giuliana d’Ippolito, Javier Pascual, Agata Gambacorta
A novel thermophilic, anaerobic, rod-shaped bacterium strain, designated Buff, was isolated from buffalo-dung samples collected from a buffalo-farm located in Caserta (Campania, south of Italy). Strain Buff was Gram-positive, motile and no spore-forming. The growth temperature range was 40–65°C with an optimum at 60°C, while pH growth range at 60°C was 5.5–8.0 with an optimum at about pH 6.5. NaCl growth concentration ranged from 0 to 2.0% with an optimum at 0.5% (w/v); no growth was observed with the presence of NaCl 3.0% (w/v). The strain produced ethanol, acetate, lactate, H2, H2S and CO2 by glucose fermentation. The DNA G + C content was 34.4 mol%. As determined by 16S rRNA sequence analysis, this organism belonged to the genus Thermoanaerobacterium. On the basis of the physiological and molecular properties, we propose for strain Buff the new species designation Thermoanaerobacterium thermostercus sp. nov. This novel organism represents the first species of the genus Thermoanaerobacterium isolated from buffalo-dung. The type strain is Buff (=DSM 22141 = ATCC BAA-1776).
An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment
Springer Science and Business Media LLC - - 2000
Dimitry Y. Sorokin, Brian E. Jones, J.G. Kuenen
First structure of archaeal branched-chain amino acid aminotransferase from Thermoproteus uzoniensis specific for l-amino acids and R-amines
Springer Science and Business Media LLC - Tập 20 - Trang 215-225 - 2016
Konstantin M. Boyko, Tatiana N. Stekhanova, Alena Yu. Nikolaeva, Andrey V. Mardanov, Andrey L. Rakitin, Nikolai V. Ravin, Ekaterina Yu. Bezsudnova, Vladimir O. Popov
The gene TUZN1299 from the genome of the hyperthermophilic archaeon Thermoproteus uzoniensis encoding a new 32.8 kDa branched-chain amino acid aminotransferase (BCAT) was expressed in Escherichia coli. The recombinant protein TUZN1299 was purified to homogeneity in the PLP-bound form. TUZN1299 was active towards branched-chain amino acids (l-Val, l-Leu, l-Ile) and showed low but detectable activity toward (R)-alpha-methylbenzylamine. The enzyme exhibits high-temperature optimum, thermal stability, and tolerance to organic solvents. The structure of an archaeal BCAT called TUZN1299 was solved for the first time (at 2.0 Å resolution). TUZN1299 has a typical BCAT type IV fold, and the organization of its active site is similar to that of bacterial BCATs. However, there are some differences in the amino acid composition of the active site.
Cuniculiplasmataceae, their ecogenomic and metabolic patterns, and interactions with ‘ARMAN’
Springer Science and Business Media LLC - Tập 23 - Trang 1-7 - 2018
Olga V. Golyshina, Rafael Bargiela, Peter N. Golyshin
Recently, the order Thermoplasmatales was expanded through the cultivation and description of species Cuniculiplasma divulgatum and corresponding family Cuniculiplasmataceae. Initially isolated from acidic streamers, signatures of these archaea were ubiquitously found in various low-pH settings. Eight genomes with various levels of completeness are currently available, all of which exhibit very high sequence identities and genomic conservation. Co-existence of Cuniculiplasmataceae with archaeal Richmond Mine acidophilic nanoorganisms (‘ARMAN’)-related archaea representing an intriguing group within the “microbial dark matter” suggests their common fundamental environmental strategy and metabolic networking. The specific case of “Candidatus Mancarchaeum acidiphilum” Mia14 phylogenetically affiliated with “Ca. Micrarchaeota” from the superphylum “Ca. Diapherotrites” along with the presence of other representatives of ‘DPANN’ with significantly reduced genomes points at a high probability of close interactions between the latter and various Thermoplasmatales abundant in situ. This review critically assesses our knowledge on specific functional role and potential of the members of Cuniculiplasmataceae abundant in acidophilic microbiomes through the analysis of distribution, physiological and genomic patterns, and their interactions with ‘ARMAN’-related archaea.
International conference on extremophiles 2014
Springer Science and Business Media LLC - Tập 18 Số 5 - Trang 789-790 - 2014
Garabed Antranikian, E. A. Bonch-Osmolovskaya, Haruyuki Atomi, Aharon Oren, Michael W. W. Adams, Helena Santos
A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring
Springer Science and Business Media LLC - Tập 7 - Trang 283-290 - 2003
Koji Mori, Hongik Kim, Takeshi Kakegawa, Satoshi Hanada
A novel type of a sulfate-reducing microorganism, represented by strain Na82T, was isolated from a hot spring in Narugo, Japan. The isolate was a moderate thermophilic autotroph that was able to grow on H2/CO2 by sulfate respiration. The isolate could grow with nitrate in place of sulfate, and possessed menaquinone-7 and menaquinone-7(H2) as respiratory quinones. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Na82T was a member of the domain Bacteria and distant from any known bacteria, as well as from other sulfate-reducing bacteria (sequence similarities less than 80%). The phylogenetic analysis of the dsrAB gene (alpha and beta subunits of dissimilatory sulfite reductase) sequence also suggested that strain Na82T was not closely related to other sulfate reducers. On the basis of the phenotypic and phylogenetic data, a new taxon is established for the isolate. We proposed the name Thermodesulfobium narugense gen. nov., sp. nov. with strain Na82T (=DSM 14796T=JCM 11510T) as the type strain. Furthermore, a new family, Thermodesulfobiaceae fam. nov., is proposed for the genus.
Tổng số: 1,235   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10