NeuroMolecular Medicine
Công bố khoa học tiêu biểu
Sắp xếp:
Impairment of Brain Mitochondrial Charybdotoxin- and ATP-Insensitive BK Channel Activities in Diabetes
NeuroMolecular Medicine - Tập 16 - Trang 862-871 - 2014
Existing evidence indicates an impairment of mitochondrial functions and alterations in potassium channel activities in diabetes. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive Ca2+-activated potassium channel (mitoBKCa) is altered in a streptozotocin (STZ) model of diabetes. Using ion channel incorporation of brain mitochondrial inner membrane into the bilayer lipid membrane, we provide in this work evidence for modifications of the mitoBKCa ion permeation properties with channels from vesicles preparations coming from diabetic rats characterized by a significant decrease in conductance. More importantly, the open probability of channels from diabetic rats was reduced 1.5–2.5 fold compared to control, the most significant decrease being observed at depolarizing potentials. Because BKCa β4 subunit has been documented to left shift the BKCa channel voltage dependence curve in high Ca2+ conditions, a Western blot analysis was undertaken where the expression of mitoBKCa α and β4 subunits was estimated using of anti-α and β4 subunit antibodies. Our results indicated a significant decrease in mitoBKCa β4 subunit expression coupled to a decrease in the expression of α subunit, an observation compatible with the observed decrease in Ca2+ sensitivity. Our results thus demonstrate a modification in the mitoBKCa channel gating properties in membrane preparations coming from STZ model of diabetic rats, an effect potentially linked to a change in mitoBKCa β4 and α subunits expression and/or to an increase in reactive oxygen species production in high glucose conditions.
Correction to: Mild TBI Results in a Long-Term Decrease in Circulating Phospholipids in a Mouse Model of Injury
NeuroMolecular Medicine - Tập 22 Số 2 - Trang 331-331 - 2020
Alpha-Linolenic Acid-Induced Increase in Neurogenesis is a Key Factor in the Improvement in the Passive Avoidance Task After Soman Exposure
NeuroMolecular Medicine - Tập 17 - Trang 251-269 - 2015
Exposure to organophosphorous (OP) nerve agents such as soman inhibits the critical enzyme acetylcholinesterase (AChE) leading to excessive acetylcholine accumulation in synapses, resulting in cholinergic crisis, status epilepticus and brain damage in survivors.
The hippocampus is profoundly damaged after soman exposure leading to long-term memory deficits. We have previously shown that treatment with three sequential doses of alpha-linolenic acid, an essential omega-3 polyunsaturated fatty acid, increases brain plasticity in naïve animals. However, the effects of this dosing schedule administered after a brain insult and the underlying molecular mechanisms in the hippocampus are unknown. We now show that injection of three sequential doses of alpha-linolenic acid after soman exposure increases the endogenous expression of mature BDNF, activates Akt and the mammalian target of rapamycin complex 1 (mTORC1), increases neurogenesis in the subgranular zone of the dentate gyrus, increases retention latency in the passive avoidance task and increases animal survival. In sharp contrast, while soman exposure also increases mature BDNF, this increase did not activate downstream signaling pathways or neurogenesis. Administration of the inhibitor of mTORC1, rapamycin, blocked the alpha-linolenic acid-induced neurogenesis and the enhanced retention latency but did not affect animal survival. Our results suggest that alpha-linolenic acid induces a long-lasting neurorestorative effect that involves activation of mTORC1 possibly via a BDNF-TrkB-mediated mechanism.
Specific Susceptibility to COVID-19 in Adults with Down Syndrome
NeuroMolecular Medicine - Tập 23 - Trang 561-571 - 2021
The current SARS-CoV-2 outbreak, which causes COVID-19, is particularly devastating for individuals with chronic medical conditions, in particular those with Down Syndrome (DS) who often exhibit a higher prevalence of respiratory tract infections, immune dysregulation and potential complications. The incidence of Alzheimer’s disease (AD) is much higher in DS than in the general population, possibly increasing further the risk of COVID-19 infection and its complications. Here we provide a biological overview with regard to specific susceptibility of individuals with DS to SARS-CoV-2 infection as well as data from a recent survey on the prevalence of COVID-19 among them. We see an urgent need to protect people with DS, especially those with AD, from COVID-19 and future pandemics and focus on developing protective measures, which also include interventions by health systems worldwide for reducing the negative social effects of long-term isolation and increased periods of hospitalization.
Molecular Insights into the Roles of Rab Proteins in Intracellular Dynamics and Neurodegenerative Diseases
NeuroMolecular Medicine - Tập 20 - Trang 18-36 - 2018
In eukaryotes, the cellular functions are segregated to membrane-bound organelles. This inherently requires sorting of metabolites to membrane-limited locations. Sorting the metabolites from ribosomes to various organelles along the intracellular trafficking pathways involves several integral cellular processes, including an energy-dependent step, in which the sorting of metabolites between organelles is catalyzed by membrane-anchoring protein Rab-GTPases (Rab). They contribute to relaying the switching of the secretory proteins between hydrophobic and hydrophilic environments. The intracellular trafficking routes include exocytic and endocytic pathways. In these pathways, numerous Rab-GTPases are participating in discrete shuttling of cargoes. Long-distance trafficking of cargoes is essential for neuronal functions, and Rabs are critical for these functions, including the transport of membranes and essential proteins for the development of axons and neurites. Rabs are also the key players in exocytosis of neurotransmitters and recycling of neurotransmitter receptors. Thus, Rabs are critical for maintaining neuronal communication, as well as for normal cellular physiology. Therefore, cellular defects of Rab components involved in neural functions, which severely affect normal brain functions, can produce neurological complications, including several neurodegenerative diseases. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways of Rab proteins and the impact of their defects on different neurodegenerative diseases. The insights gathered into the dynamics of Rabs that are described in this review provide new avenues for developing effective treatments for neurodegenerative diseases-associated with Rab defects.
Cardiovascular Autonomic Dysfunction: Link Between Multiple Sclerosis Osteoporosis and Neurodegeneration
NeuroMolecular Medicine - Tập 20 - Trang 37-53 - 2018
The high prevalence of osteoporosis, observed in multiple sclerosis (MS) patients, has been attributed to reduced mobility and or the use of disease-modifying drugs. However, MS-impaired cardiovascular autonomic nervous system (ANS) function has the potential of reducing bone mass density (BMD) by altering the expression and/or function of the neuronal, systemic, and local mediators of bone remodeling. This review describes the complex regulation of bone homeostasis with a focus on MS, providing evidence that ANS dysfunction and low BMD are intertwined with MS inflammatory and neurodegenerative processes, and with other MS-related morbidities, including depression, fatigue, and migraine. Strategies for improving ANS function could reduce the prevalence of MS osteoporosis and slow the rate of MS progression, with a significant positive impact on patients’ quality of life.
Extract of Polygala tenuifolia, Angelica tenuissima, and Dimocarpus longan Reduces Behavioral Defect and Enhances Autophagy in Experimental Models of Parkinson’s Disease
NeuroMolecular Medicine - Tập 23 - Trang 428-443 - 2021
The 20% ethanol extract of Polygala tenuifolia, Angelica tenuissima, and Dimocarpus longan (WIN-1001X) was derived from a modified version of Korean traditional herbal formula ‘Chungsimyeolda-tang’ which has been used for the treatment of cerebrovascular disorders. The Parkinson’s disease presents with impaired motor functions and loss of dopaminergic neurons. However, the treatment for Parkinson’s disease is not established until now. This study aims to elucidate the therapeutic advantages of WIN-1001X on animal models of Parkinson’s disease. WIN-1001X administration successfully relieved the Parkinsonism symptoms in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease mice tested by rota-rod and pole tests. The loss of tyrosine hydroxylase activities in substantia nigra and striatum was also attenuated by administration of WIN-1001X. In mice with sub-chronical MPTP injections, autophagy-related proteins, such as LC3, beclin-1, mTOR, and p62, were measured using the immunoblot assay. The results were favorable to induction of autophagy after the WIN-1001X administration. WIN-1001X treatment on 6-hydroxydopamine-injected rats also exhibited protective effects against striatal neuronal damage and loss of dopaminergic cells. Such protection is expected to be due to the positive regulation of autophagy by administration of WIN-1001X with confirmation both in vivo and in vitro. In addition, an active compound, onjisaponin B was isolated and identified from WIN-1001X. Onjisaponin B also showed significant autophagosome-inducing effect in human neuroblastoma cell line. Our study suggests that relief of Parkinsonism symptoms and rescue of tyrosine hydroxylase activity in dopaminergic neurons are affected by autophagy enhancing effect of WIN-1001X which the onjisaponin B is one of the major components of activity.
Increased Cerebrospinal Fluid F2-Isoprostanes are Associated with Aging and Latent Alzheimer’s Disease as Identified by Biomarkers
NeuroMolecular Medicine - Tập 13 - Trang 37-43 - 2010
Alzheimer’s disease (AD) is a common age-related chronic illness with latent, prodrome, and fully symptomatic dementia stages. Increased free radical injury to regions of brain is one feature of prodrome and dementia stages of AD; however, it also is associated with advancing age. This raises the possibility that age-related free radical injury to brain might be caused in part or in full by latent AD. We quantified free radical injury in the central nervous system with cerebrospinal fluid (CSF) F2-isoprostanes (IsoPs) in 421 clinically normal individuals and observed a significant increase over the adult human lifespan (P < 0.001). Using CSF amyloid (A) β42 and tau, we defined normality using results from 28 clinically normal individuals <50 years old, and then stratified 74 clinically normal subjects ≥60 years into those with CSF that had normal CSF Aβ42 and tau (n = 37); abnormal CSF Aβ42 and tau, the biomarker signature of AD (n = 24); decreased Aβ42 only (n = 4); or increased tau only (n = 9). Increased CSF F2-IsoPs were present in clinically normal subjects with the biomarker signature of AD (P < 0.05) and those subjects with increased CSF tau (P < 0.001). Finally, we analyzed the relationship between age and CSF F2-IsoPs for those clinically normal adults with normal CSF (n = 37) and those with abnormal CSF Aβ42 and/or tau (n = 37); only those with normal CSF demonstrated a significant increase with age (P < 0.01). These results show that CSF F2-IsoPs increased across the human lifespan and that this age-related increase in free radical injury to brain persisted after culling those with laboratory evidence of latent AD.
The Nonsynonymous Thr105Ile Polymorphism of the Histamine N-Methyltransferase is Associated to the Risk of Developing Essential Tremor
NeuroMolecular Medicine - Tập 10 - Trang 356-361 - 2008
Objective We analyzed in patients with essential tremor (ET) the Thr105Ile polymorphism of the Histamine N-methyltransferase (HNMT) enzyme that is associated to Parkinson’s disease (PD) risk. Methods Leukocytary DNA from 204 ET patients and a control group of 295 unrelated healthy individuals was studied for the nonsynonymous HNMT Thr105Ile polymorphism by using amplification-restriction analyses. Results Patients with ET showed a higher frequency of homozygous HNMT 105Thr genotypes leading to high metabolic activity (p < 0.015) with a statistically significant gene-dose effect, as compared to healthy subjects. These findings were independent of gender, and of tremor localization, but the association of the HNMT polymorphism is more prominent among patients with late-onset ET (p < 0.007). Conclusion These results, combined with previous findings indicating alterations in the frequency for the HNMT Thr105Ile polymorphism in patients with PD, suggest that alterations of histamine homeostasis in the SNC are associated with the risk of movement disorders.
HTR2A is Associated with SSRI Response in Major Depressive Disorder in a Japanese Cohort
NeuroMolecular Medicine - Tập 12 - Trang 237-242 - 2009
Several recent investigations reported that the serotonin 2A receptor gene (HTR2A) was associated with selective serotonin reuptake inhibitors (SSRIs) in major depressive disorder. There have also been two reported association analyses of HTR2A with SSRI response in Japanese MDD patients, but the results were rather inconsistent and both studies had the problem of small sample sizes. Therefore, we conducted a replication association study using a sample larger than those in the two original Japanese studies (265 MDD patients), and found that four SNPs, two functional SNPs (-A1438G: rs6311 and T102C: rs6313) and two SNPs (rs7997012 and rs1928040) in HTR2A, were associated with the therapeutic response to SSRIs. HTR2A was associated with the therapeutic response SSRIs in Japanese MDD patients in a haplotype-wise analysis (P
all markers = 0.0136), and a significant association between rs1928040 in HTR2A and SSRI response was detected in MDD (P
allele-wise analysis = 0.0252). However, this significance disappeared after Bonferroni correction (P
allele-wise analysis = 0.101). In conclusion, we suggest that HTR2A may play an important role in the pathophysiology of the therapeutic response to SSRIs in Japanese MDD patients. However, it will be important to replicate and confirm these findings in other independent studies using large samples.
Tổng số: 601
- 1
- 2
- 3
- 4
- 5
- 6
- 61