Molecular and Cellular Biology
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
SSC1 is an essential member of the yeast HSP70 multigene family (E. Craig, J. Kramer, and J. Kosic-Smithers, Proc. Natl. Acad. Sci. USA 84:4156-4160, 1987). Analysis of the SSC1 DNA sequence revealed that it could encode a 70,627-dalton protein that is more similar to DnaK, an Escherichia coli hsp70 protein, than other yeast hsp70s whose sequences have been determined. Ssc1p was found to have an amino-terminal extension of 28 amino acids, in comparison with either Ssa1p, another hsp70 yeast protein, or Dnak. This putative leader is rich in basic and hydroxyl amino acids, characteristic of many mitochondrial leader sequences. Ssc1p that was synthesized in vitro could be imported into mitochondria and was cleaved in the process. The imported protein comigrated with an abundant mitochondrial protein that reacted with hsp70-specific antibodies. We conclude that Ssc1p is a mitochondrial protein and that hsp70 proteins perform functions in many compartments of the cell.
A hybrid gene in which the expression of an Escherichia coli beta-galactosidase gene was placed under the control of a Drosophila melanogaster 70,000-dalton heat shock protein (hsp70) gene promoter was constructed. Mutant derivatives of this hybrid gene which contained promoter sequences of different lengths were prepared, and their heat-induced expression was examined in D. melanogaster and COS-1 (African green monkey kidney) cells. Mutants with 5' nontranscribed sequences of at least 90 and up to 1,140 base pairs were expressed strongly in both cell types. Mutants with shorter 5' extensions (of at least 63 base pairs) were transcribed and translated efficiently in COS-1 but not at all in D. melanogaster cells. Thus, in contrast to the situation in COS-1 cells, the previously defined heat shock consensus sequence which is located between nucleotides 62 and 48 of the hsp70 gene 5' nontranscribed DNA segment is not sufficient for the expression of the D. melanogaster gene in homologous cells. A second consensus-like element 69 to 85 nucleotides upstream from the cap site is postulated to be also involved in the heat-induced expression of the hsp70 gene in D. melanogaster cells.
The Drosophila heat shock cognate gene 4 (hsc4), a member of the hsp70 gene family, encodes an abundant protein, hsc70, that is more similar to the constitutively expressed human protein than the Drosophila heat-inducible hsp70. Developmental expression revealed that hsc4 transcripts are enriched in cells active in endocytosis and those undergoing rapid growth and changes in shape.
The gene encoding GRP78 has been shown to be constitutively expressed in many cell types and is inducible by the calcium ionophore A23187. To understand the regulation of GRP78 transcription, we analyzed the components that control its basal-level expression. By transfecting deletions into cells, we have identified a 54-nucleotide cis-acting regulatory element important for high basal-level expression and a contiguous 50-nucleotide element for both basal-level expression and A23187 induction. Using DNase footprinting assays with both rat and human GRP78 promoters, we demonstrated that the protein factors present in the HeLa cell nuclear extracts bind to the regulatory regions identified by the deletion studies. This domain contains a palindromic sequence and is highly conserved among GRP genes in Caenorhabditis elegans, chicks, rats, and humans.
At least four proteins of 70,000 to 75,000 molecular weight (70-75K) were synthesized from mRNA which hybridized with a cloned heat shock gene previously shown to be localized to the 87A and 87C heat shock puff sites. These in vitro-synthesized proteins were indistinguishable from in vivo-synthesized heat shock-induced proteins when analyzed on sodium dodecyl sulfate-polyacrylamide gels. A comparison of the pattern of this group of proteins synthesized in vivo during a 5-min pulse or during continuous labeling indicates that the 72-75K proteins are probably not kinetic precursors to the major 70K heat shock protein. Partial digestion products generated with V8 protease indicated that the 70-75K heat shock proteins are closely related, but that there are clear differences between them. The partial digestion patterns obtained from heat shock proteins from the Kc cell line and from the Oregon R strain of Drosophila melanogaster are very similar. Genetic analysis of the patterns of 70-75K heat shock protein synthesis indicated that the genes encoding at least two of the three 72-75K heat shock proteins are located outside of the major 87A and 87C puff sites.
Monoclonal antibodies have been used to identify three proteins in Drosophila melanogaster that share antigenic determinants with the major heat shock proteins hsp70 and hsp68. While two of the proteins are major proteins at all developmental stages, one heat shock cognate protein, hsc70, is especially enriched in embryos. hsc70 is shown to be the product of a previously identified gene, Hsc4. We have examined the levels of hsp70-related proteins in adult flies and larvae during heat shock and recovery. At maximal induction in vivo, hsp70 and hsp68 never reach the basal levels of the major heat shock cognate proteins. Monoclonal antibodies to hsc70 have been used to localize it to a meshwork of cytoplasmic fibers that are heavily concentrated around the nucleus.
We isolated the promoter of the human gene encoding the 94,000-dalton glucose-regulated protein (GRP94). The 5'-flanking region important for its expression was identified by deletion analysis. Comparison of the promoters of the genes for GRP78 and GRP94 derived from human, rat, and chicken cells revealed a common domain of 28 base pairs within the putative regulatory regions of both genes. This domain has been shown to interact with protein factors in the promoter of the gene for GRP78. Since the genes for GRP94 and GRP78 are transcriptionally regulated with similar kinetics under a variety of stress conditions, we are interested in examining the possible mechanisms for their coordinated expression. Through in vitro and in vivo competition assays, we found that the protein factors which interact with the promoter of the gene for GRP94 also have affinity for the conserved domain of the promoter of the gene for GRP78. These findings suggest that the genes for GRP94 and GRP78 are coordinately regulated through common trans-acting factors which recognize a common regulatory domain of glucose-regulated protein gene promoters.
Saccharomyces cerevisiae contains a large family of genes related to hsp70, the major heat shock-inducible gene of Drosophila melanogaster. One subfamily, identified by sequence homology, contains four genes, SSA1, SSA2, SSA3, and SSA4 (formerly YG100, YG102, YG106, and YG107, respectively). Previous studies showed that strains containing mutations in SSA1 and SSA2 are temperature sensitive for growth. SSA4, which is normally heat inducible and not expressed during vegetative growth, is expressed at high levels in ssa1 ssa2 strains at 23 degrees C. We constructed mutations in SSA3 and SSA4 and analyzed strains carrying mutations in the four genes. Strains carrying mutations in SSA3 SSA4 or SSA3 and SSA4 were indistinguishable from the wild type. However, ssa1 ssa2 ssa4 strains were inviable. SSA3, like SSA4, is a heat-inducible gene that is not normally expressed at 23 degrees C. Nevertheless, an intact copy of SSA3 regulated by the constitutive SSA2 promoter was capable of rescuing a ssa1 ssa2 ssa4 strain. This indicates that SSA3 encodes a functional protein and that the SSA1, SSA2, SSA3, and SSA4 gene products are functionally similar.
- 1
- 2
- 3
- 4
- 5
- 6
- 10