Marine Geophysical Researches
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Large Amplitude Magnetic Anomalies in the Northern Sector of the Powell Basin, NE Antarctic Peninsula
Marine Geophysical Researches - Tập 19 Số 1 - Trang 65-80 - 1997
Magnetic profiles obtained during the Hesant 92/93 cruise with the R/V Hesperides show large amplitude anomalies (up to 1000 nT) along a 100 km wide band in the northern margin of the Powell Basin. The anomalies, which are also locally identified in the eastern and western margins, are attributed to the continuation of the two branches of the Antarctic Peninsula Pacific Margin Anomaly (PMA). Interactive modelling of two-dimensional bodies in four profiles oriented NNW-SSE allows us to determine the main features of the magnetic source bodies within the continental crust. These are elongated in a N60/degE trend, and their base is located at a depth exceeding 15 km. Equivalent magnetic susceptibilities mostly between 0.07 and 0.1 (SI) are obtained. These values are consistent with the hypothesis that remanent magnetisation of the magnetic source bodies is sub-parallel to the present geomagnetic field (norÍmally magnetised). The general trends of the bathymetry a nd the geometry of the acoustic basement on multichannel seismic profiles are consistent with the upper surface of magnetic bodies. In order to match the observed anomalies it is also necessary to consider a second tabular shaped body with induced magnetisation in almost all the profiles, which could represent layers 2 and 3 of the oceanic crust of the Powell Basin. Three different geometries of connection between the anomalies in the Powell Basin margins and the PMA branches are discussed. The most plausible one is the occurrence of two branches, although they are closer together than in the Bransfield Strait. The northern branch would continue along the fragments of continental crust of the South Scotia Ridge located at the northern boundary of the Powell Basin, whereas the southern branch would be located only in the eastern and western passive margins of the Powell Basin. The apparent splitting of the southern branch of the anomalous body indicates that it was emplaced before Oligo cene times, when the opening of this basin occurred, and that it was subsequently fragmented during the Cenozoic. A possible time of formation of the PMA body would be during the long Cretaceous normal polarity interval, which also coincides with a peak in magmatic activity along the Antarctic Peninsula.
Drowned carbonate platforms in the Bismarck Sea, Papua New Guinea
Marine Geophysical Researches - Tập 30 - Trang 229-236 - 2010
Extinct volcanic islands in the Bismarck volcanic arc are fringed by well-developed coral reefs. Drowned platforms offshore from these islands provide evidence for subsidence in the central section of the arc, north of the Finisterre Terrane–Australia collision. Bathymetric and backscatter data collected onboard the R/V Kilo Moana in 2004 reveal regularly spaced (~200 m interval) drowned platforms at depths as much as 1,100 m below sea level. However, the adjacent mainland coast has well documented raised terraces indicating long-term uplift. Local subsidence may be due to cessation of magmatic activity and cooling, flexural loading by the uplifting Finisterre Range, loading by nearby active volcanic islands, and/or sediment loading on the seafloor north of the Finisterre Range. We present some simple models in order to test whether flexural loading can account for local subsidence. We find that volcanic and sedimentary loading can explain the inferred relative subsidence.
A seismic refraction study of cretaceous oceanic lithosphere in the Northwest Pacific Basin
Marine Geophysical Researches - Tập 11 - Trang 239-261 - 1989
A seismic refraction study on old (≈110 Myr) lithosphere in the northwest Pacific Basin has placed constraints on crustal and uppermantle seismic structure of old oceanic lithosphere, and lithospheric aging processes. No significant lateral variation in structure other than azimuthally anisotropic mantle velocities was found, allowing the application of powerful amplitude modeling techniques. The anisotropy observed is in an opposite sense to that expected, suggesting the tectonic setting of the area may be more complex than originally thought. Upper crustal velocities are generally larger than for younger crust, supporting current theories of decreased porosity with crustal aging. However, there is no evidence for significant thickening of the oceanic crust with age, nor is there any evidence of a lower crustal layer of high or low velocity relative to the velocity of the rest of Layer 3. The compressional and shear wave velocities rule out a large component of serpentinization of mantle materials. The only evidence for a basal crustal layer of olivine gabbro cumulates is a 1.5 km thick Moho transition zone. In the slow direction of anisotropy, upper mantle velocities increase from 8.0 km s-1 to 8.35 km s-1 in the upper 15 km below the Moho. This increase is inconsistent with an homogeneous upper mantle and suggests that compositinal or phase changes occur near the Moho.
The Bremen ocean bottom tiltmeter (OBT) – a technical article on a new instrument to monitor deep sea floor deformation and seismicity level
Marine Geophysical Researches - Tập 28 - Trang 13-26 - 2007
The Bremen ocean bottom tiltmeter is a new 6000 m-depth deep sea instrument for autonomous observation of sea floor tilt with signal periods longer than 7.5 s. The instrument also records vertical acceleration in the frequency range from DC to 1 Hz. The tiltmeter has an Applied Geomechanics Inc. 756 wide angle biaxial bubble tilt sensor with a resolution of 1.0μ rad (0.2 arc second). A Kistler Corp. MEMS accelerometer of type Servo K-Beam 8330A2.5 with about 10−5m/s2 resolution is used for the acceleration measurements. An Oceanographic Embedded Systems AD24 24 bit Sigma-Delta converter, which is controlled by a low-power Persistor Inc. embedded computer system of type CF 2, samples the data. The duration of tiltmeter operation is more than one year, which is controlled by the battery life. In our design the tiltmeter does not need active leveling devices, i.e., servo motors or other moving components to adjust sensors or frame. We designed the instrument for deployments by means of a remote operated vehicle. Since May 2005 the Bremen ocean bottom tiltmeter has recorded sea floor deformation and seismicity level in the Logatchev hydrothermal vent field, Mid-Atlantic Ridge. The tiltmeter is a part of the monitoring system of project ‘Logatchev Long-Term Environmental Monitoring,’ called LOLEM, of the German research program with the name ‘Schwerpunktprogramm 1144: Vom Mantel zum Ozean.’
Variations in the thermal conductivities of surface sediments in the Nankai subduction zone off Tokai, central Japan
Marine Geophysical Researches - Tập 33 - Trang 269-283 - 2012
We investigated the relationship between variations in the thermal conductivity of surface sediments and the topography in the Nankai subduction zone off Tokai, central Japan, the easternmost part of the Nankai subduction zone, which has an accretionary prism with varied topography. We analyzed sediment thermal conductivity data obtained from the trough floor and accretionary prism. Variations in the thermal conductivity of sediments were related to the topographic features formed by accretionary prism development. Thermal conductivities of 1.1 W/m K were measured on the trough floor where thick terrigenous turbidites have been deposited. The thermal conductivity of Nankai Trough floor sediments decreases from northeast to southwest along the trough, probably because of the decreased grain size and/or changes in sediment mineral composition. High thermal conductivities (≥1.0 W/m K) were measured in fault scarps on the accretionary prism. A landward increase in these values on the prism may be explained by decreased porosity of the sediments attributable to tectonic deformation during accretionary prism development. At the base of the fault scarp of the frontal thrust, low thermal conductivities (<0.9 W/m K) were measured, likely reflecting the high porosity of the talus deposits. Low thermal conductivity (0.9 W/m K) was also measured in slope basins on the accretionary prism, likely also related to the high porosity of the sediments. Our results demonstrate that, for accurate heat flow measurement in an area of varied topography, the geothermal gradient and the thermal conductivity of the sediments must be measured within regions with similar topographic features.
The crustal structure of Concepcion Bank
Marine Geophysical Researches - Tập 3 Số 4 - Trang 381-392 - 1978
Seismic and well logging interpretation for evaluation of the lower Bahariya reservoir, southwest Qarun (SWQ) Field, Gindi Basin, Egypt
Marine Geophysical Researches - Tập 38 - Trang 271-290 - 2017
This paper focuses on seismic and well log interpretations for evaluating the sandstones of the Cenomanian Bahariya Formation in the southwest Qarun Field, Gindi Basin, northern Western Desert of Egypt. The seismic profiles display a clear anticlinal structure intersected by reverse faults in the study area. This faulted anticline has been interpreted to be one of the Syrian arc system folds formed by Upper Cretaceous tectonic inversion, which resulted from the NW movement of the African Plate relative to Laurasia. This anticline has been recommended as a target for exploration by the present work as it may represent a structural trap for hydrocarbon accumulation. The sandstones of the Lower Bahariya Formation in the southwest Qarun Field display good reservoir characteristics. The interpretation of the available well log data for the SWQ-21 and SWQ-25 wells for the Lower Bahariya Formation reflects a good reservoir quality for oil production in its topmost part. This reservoir possesses low SW (<50%), high porosity (16%), low SW/SXO and low BVW (<0.09) which all reflect a high potential for oil production.
Ocean-bottom seismometer observations of seismic activity at Loihi Seamount, Hawaii
Marine Geophysical Researches - Tập 17 - Trang 485-501 - 1995
This study reports the result of deep ocean-bottom seismometer recording of an undersea volcanic event in progress. An array of five three-component, isolated sensor ocean-bottom seismometers (ISOBS) was deployed for 28 days on the summit and flanks of Loihi Seamount, Hawaii, to monitor seismicity. The deployment was prompted by reports from the Hawaiian Volcano Observatory (HVO) of a swarm of small-magnitude events located beneath the active submarine volcano in late September, 1986. Monitoring of this earthquake swarm by the University of Hawaii commenced 1 October 1986. Although seismicity tapered off rapidly after 11 October, more than 200 events were located. Systematic changes in spatial clustering during the initial swarm activity suggest changing patterns of stress within this crustal volume, possibly due to induced stress resulting from magma movement in the underlying crust or deep portions of the edifice. Most of the very shallow (< 10 km) events were located beneath the summit and southwest flank of the elongate edifice. No shallow tremor was observed despite a search through the data, although such tremor may have ceased prior to deployment of the ocean-bottom seismometers (OBS). Constraints on the association between seismicity and observed topographic and tectonic elements of Loihi are also of primary importance. Many of the earthquakes located near the steep flanks generated rock falls that were recorded on the OBSs. This is consistent with the results of dredge and bottom photography data indicating that the flanks are covered with fragments of shattered lava pillows and flows. Dike intrusion and mass wasting are major influences on the morphology of Loihi. Intact flows have been observed near the deep portion of the south rift zone; however, few events were located in that region during this swarm.
Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards
Marine Geophysical Researches - Tập 32 - Trang 331-347 - 2010
This study of subaquatic slope failures in Lake Lucerne, central Switzerland, presents a new concept for evaluating basin-wide slope stability through time as a potential tool for regional seismic and tsunami hazard assessments. Previously acquired high-resolution bathymetry and reflection seismic data, as well as sedimentological and in situ geotechnical data, provide a comprehensive data base to use this lake as a “model basin” to investigate subaquatic landslides and related geohazards. Available data are implemented into a basin-wide slope model. In a Geographic Information System (GIS)-framework, a pseudo-static limit equilibrium infinite slope stability equation is solved for each model point representing reconstructed slope conditions at different times in the past, during which earthquake-triggered landslides occurred. Comparison of reconstructed critical stability conditions with the known distribution of landslide deposits reveals minimum and maximum threshold conditions for slopes that failed or remained stable, respectively. The resulting correlations reveal good agreements and suggest that the slope stability model generally succeeds in reproducing past events. The basin-wide mapping of subaquatic slope failure susceptibility through time thus can also be considered as a promising paleoseismologic tool. Furthermore, it can be used to assess the present-day slope failure susceptibility, allowing for identification of location and estimation of size of future, potentially tsunamigenic subaquatic landslides.
Morphology and tectonics of the Romanche Transform and its environs
Marine Geophysical Researches - Tập 16 - Trang 427-453 - 1994
We describe the results of GLORIA surveys of the Romanche Transform and neighbouring areas of the Equatorial Atlantic Ocean. These surveys have imaged the whole of the Romanche Transform Fault, the eastern end of the Saint Paul Transform, the spreading centre joining them, and the northern part of the spreading centre between Romanche and Chain transforms. They have also imaged representative parts of the off-axis seafloor structure in these areas, and have facilitated preparation of a new bathymetric map, which is presented here. Contrary to previous descriptions of the area, we have found that there is ‘normal’ spreading fabric (volcano-tectonic lineaments trending NNW-SSE orthogonal to the spreading direction) between these major equatorial fracture zones. This implies that normal seafloor spreading processes have operated there. The Romanche Transform Domain, within which normal spreading fabric is either absent or heavily modified, and transform-related structures predominate, is about 100 km wide. There are multiple transform faults within Saint Paul Fracture Zone, of which we have imaged the active traces of the two southernmost ones. These transforms are joined by short but otherwise normal spreading segments. The Romanche Transform is shorter than previously thought, with a length of 840 km. This is equivalent to an age offset of about 50 Ma. The transform has a complex system of short normal and oblique spreading centres at its eastern intersection, forming an overall oblique section of ridge which may have recently cut off the corner of an earlier, simple, orthogonal ridge-transform intersection. The recent complex system appears to have developed at about 1.5 Ma. An oblique valley is mapped south of the western end of Romanche Transform, and is thought to be the fracture zone trace of an old transform offset between Romanche and Chain transforms. This transform disappeared at about chron 8 (26.9 Ma), as its trace is not seen between 20° W and the spreading centre.
Tổng số: 801
- 1
- 2
- 3
- 4
- 5
- 6
- 10