Marine Biology

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Comparison of the food of Triphoturus mexicanus and T. nigrescens, two lanternfishes of the Pacific Ocean
Marine Biology - Tập 63 - Trang 87-100 - 1981
S. Imsand
Prey (chiefly euphausiids and copepods) eaten by two myctophids (lanternfishes) are compared from incidence in fish stomachs and from abundance in the environment. One lanternfish species, Triphoturus mexicanus, lives in the California Current, and the other, T. nigrescens, lives in the central Pacific Ocean. Although these two environments are very different physically and biologically, the feeding habits of the two lanternfishes are surprisingly similar. Prey biomass is 94% euphausiids, 3% copepods, and 3% other organisms for T. mexicanus and 88% euphausiids, 4.5% copepods, and 7.5% other organisms for T. nigrescens; the difference between the fish species is not significant when tested statistically. The two fishes resemble one another in frequency distributions of ingested copepod individuals, copepod species, euphausiid individuals, and euphausiid species. During a single diurnal feeding period, both fishes eat a variety of copepod species but tend to eat only a single species of euphausiid. T. mexicanus grows to twice the length of T. nigrescens and eats proportionally larger euphausiids; however, both fishes eat copepods having the same median size. The frequencies of euphausiid species in the diets of both fishes differ from the frequencies in the environment. The chief differences between the feeding habits of the two lanternfishes are that T. nigrescens, in comparison to its congener, eats a greater variety of organisms during one diurnal feeding period and captures smaller euphausiids. The feeding patterns for each lanternfish species are consistent over distances of hundreds of kilometers and over many years of sampling.
An experimental study of the effect of diet on the fatty acid profiles of the European Cuttlefish (Sepia officinalis)
Marine Biology - Tập 154 - Trang 363-372 - 2008
Miriam Fluckiger, George D. Jackson, Peter Nichols, Patti Virtue, Adam Daw, Simon Wotherspoon
Fatty acid analysis is an alternative dietary investigation tool that complements the more traditional techniques of stomach content and faecal analysis that are often subject to a wide range of biases. In applying fatty acid analysis to ecosystem studies, it is important to have an understanding of the effect diet has on the fatty acid profile of the predator. A feeding experiment, using crustacean and fish as prey for the European cuttlefish Sepia officinalis, was conducted to evaluate the effect of prey fatty acids on the fatty acid profile of this marine predator. Cuttlefish were fed on a fish diet for the first 29 days, and then changed to a crustacean diet for a further 28 days. Another group of cuttlefish was fed on a crustacean diet for the first 29 days, and then changed to a fish diet for a further 28 days. An analysis of the cuttlefish digestive gland showed that the fatty acid profile reflected that of the prey, with cuttlefish on a crustacean diet being clearly distinguishable from the cuttlefish on a fish diet. Cuttlefish fed on a fish diet for 29 days prior to the switch in diet were comparatively higher in 16:0, AA, 20:1ω9, DPA6, DHA, 22:4ω6 and DPA3 than those fed on crustaceans. Cuttlefish fed on a crustacean diet for 29 days prior to the switch in diet were comparatively higher in 17:1ω8, 18:1ω9, 18:2ω6, 18:1ω7, EPA and 20:2ω6 than those fed on fish. Following a change in diet, the fatty acid profile of the cuttlefish digestive gland reflected that of the new diet within 14 days. The results confirm that the fatty acid profile of the cuttlefish digestive gland clearly reflects the profile of its recent diet. It also shows that the digestive gland may not be an organ that accumulates dietary lipids for long-term storage, but rather is an organ where lipids are rapidly being turned over and potentially excreted.
Relationship between seasonal growth, photosynthetic production and apex mortality of Caulerpa paspaloides (Chlorophyceae)
Marine Biology - Tập 72 - Trang 61-67 - 1982
S. W. O'Neal, J. S. Prince
Seasonal changes in rates of rhizome elongation, frond initiation, photosynthesis, respiration, starch content and mortality of rhizome apices were measured for a population of Caulerpa paspaloides (Bory) Greville located off Key Largo, Florida, USA. Maximal growth rates occur during spring and coincide with high photosynthetic production and low mortality of rhizome apices. A secondary period of rapid growth occurs during fall; however, rates are less than during spring. Minimal growth rates occur during winter and summer. Reduced growth during winter coincides with (1) low photosynthetic rates, (2) low photosynthesis: respiration ratios, and (3) reduced frond biomass, indicating that photosynthetic production is limiting. Reserve carbohydrate (starch) is apparently utilized to maintain vegetative growth during the winter. Increased mortality of rhizome apices is responsible for most of the reduction in growth during summer and fall.
Comparing the effects of different coloured artificial illumination on diurnal fish assemblages in the lower mesophotic zone
Marine Biology - Tập 166 - Trang 1-9 - 2019
Matthew J. Birt, Marcus Stowar, Leanne M. Currey-Randall, Dianne L. McLean, Karen J. Miller
Artificial illumination is required when sampling with baited remote underwater video systems (BRUVS) in the lower mesophotic zone beyond ~ 90 m depth, yet little is known of how the choice of lighting influences fish assemblages and affects survey results in this zone. Here we use BRUVS equipped with the commonly used GoPro action camera to compare the composition and abundance of diurnal fish assemblages sampled under artificial Royal blue (~ 450 nm), Deep red (~ 660 nm) and natural day white light (~ 5600 K) in the lower mesophotic zone of the north-west shelf of Australia (19° 14.724′S 117° 20.286′E). No significant differences were detected in the fish assemblage composition or the number of species when surveyed using blue, red or white light at our study location. A greater mean total abundance of fish was observed using red light compared with white and blue light, however, individual species showed varied responses to the different light colours. When using consumer-grade action cameras such as GoPros, white light was shown to be far superior in image quality (and therefore ease of fish identification) compared to red and blue light. We recommend sampling diurnal mesophotic fish assemblages using a wavelength of light based on the survey objectives and the capabilities of the camera selected.
Precision of the mean and the design of benthos sampling programmes: caution advised
Marine Biology - Tập 103 - Trang 225-230 - 1989
M. J. Riddle
To calculate the number of samples required to estimate population density to a specified precision, a prior estimate of the sample variance is needed. Using data from the freshwater benthic literature, Downing (1979, 1980a) calculated a regression equation to predict sample variance from sampler size and population density. He used predicted sample variance to calculate the number of samples, of a range of sizes, required to estimate a range of population densities to a specified precision. He concludes that massive savings (1300 to 5000%) of total surface area sampled may be achieved by using sample units of small surface area. These conclusions are misleading. The data set used for the regression does not adequately cover the combination of a low-density population sampled by a device of small surface area. The benthic community of Belhaven Bay, East Lothian, Scotland was sampled in 1982 with a 0.1 m2 grab and a 0.0018 m2 corer, providing 112 sets of replicate data which were used to test the hypothesis that for a specified precision of the mean a considerable saving of total area sampled may be obtained by sampling with a device of small surface area. The benthos of Loch Creran, Argyll, Scotland was sampled with contiguous corer samples on four occasions in 1980 and 1981, providing 234 independent sets of replicate data. Contiguous samples were grouped to form several simulated series of samples of increasing surface area. A sampler of small surface area provided a saving of total area sampled of about 20%. Whether such a small saving is justifiable will depend on the extra field expenses incurred by taking many small samples.
RAPD-PCR investigations of systematic relationships among four species of eels (Teleostei: Anguillidae), particularly Anguilla anguilla and A. rostrata
Marine Biology - Tập 137 - Trang 195-204 - 2000
D. Lehmann, H. Hettwer, H. Taraschewski
 We examined the genetic identities of 49 individuals of four species of eels in the genus Anguilla Shaw, A. anguilla, A. japonica, A. reinhardti and A. rostrata, using the random(ly) amplified polymorphic DNA (RAPD)-PCR technique. We used 15 random decamer primers. Out of the 22 148 amplification products detected, 454 markers were evaluated using Nei's distance coefficient, two numerical methods (neighbor-joining, UPGMA), and phylogenetic analysis using parsimony (PAUP). Both numerical and parsimony methods were congruent and confirmed the specific status of all four examined Anguilla species. In all dendrograms, all individuals of each of the species clustered together within four closed groups with highly significant bootstrap values (between 97 and 100%). Additionally 1 to 18 species-specific monomorphic diagnostic fragments were detected in three of the species; none were detected in A. anguilla. Mean interspecific genetic distances ranged from 0.384 to 0.559, with the minimum between A. anguilla and A. rostrata and the maximum between A. anguilla and A. reinhardti. Individuals collected at one locality and belonging to a single species did not cluster together, and neither were any diagnostic monomorphic fragments found for individuals of single localities. This probably reflects a random dispersal of larvae in ocean currents before they reach coastal waters. Among all possible species pairs, only the two Atlantic species were consistently clustered in all dendrograms, with highly significant bootstrap values (100%). Additionally, we detected ten diagnostic markers for this pair of eel species. From RAPD data, we suggest a phylogram which was routed by the descending analysis method: A. reinhardti appears to have been the first species to diverge from a putative common ancestor of the four eel species. Later, A. japonica separated from the hypothetical ancestor of the Atlantic species, which then split recently into A. anguilla and A. rostrata. The close relationship of A. anguilla and A. rostrata is indicated by their low genetic distance (GD = 0.384) and a high degree of shared RAPD fragments (SF = 71.2%); this compares with the following means for all other species pairs: (  = 0.531,  = 44.2%). The prerequisites for using RAPD data for the reconstruction of phylogenies are discussed.
Reproduction and distribution of the invasive European fanworm Sabella spallanzanii (Polychaeta: Sabellidae) in Port Phillip Bay, Victoria, Australia
Marine Biology - Tập 136 - Trang 645-656 - 2000
D. R. Currie, M. A. McArthur, B. F. Cohen
 The European fanworm Sabella spallanzanii (Gmelin, 1791) was recently introduced to Port Phillip Bay and is now a conspicuous component of most benthic communities. Reproduction of the worm was investigated in a population at Queenscliff over a 2 yr period (October 1995 to October 1997) using gonadal histology. The worms are dioecious (sex ratio 1:1, n=250), and attained sexual maturity at ∼50 mm body length. Reproductive periodicity followed a distinct annual cycle, and spawning proceeded through an extended autumn/winter period. Spawning was broadly synchronous between sexes, and coincided with falling seawater temperatures and shorter day-lengths. The females were highly fecund, and >50 000 eggs were probably shed from large females (>300 mm body length) during the annual spawning period. Breeding cycles of S. spallanzanii in Port Phillip Bay are ∼6 mo out of phase with endemic populations located at similar latitudes in the northern hemisphere. The spread of S. spallanzanii within Port Phillip Bay has been monitored by divers on an annual basis since 1994. The most recent dive survey (1998) indicates that S. spallanzanii has extended its range through out the entire 2000 km2 embayment, and has invaded most subtidal habitats. Quantitative estimates of S. spallanzanii abundances were highest on pier pylons (12.5 individuals m−2, 0.5 to 7 m depths). On sediments, estimates were highest at shallow sites (0.3 m−2, 7 m depth), but numbers declined significantly with depth (0.1 m−2, 17 to 22 m depth). Mean worm lengths and biomass were, by contrast, significantly higher at intermediate depths (12 to 17 m) than in shallower (7 m) or deeper (22 m) locations. S. spallanzanii demonstrates a clear preference for growth in sheltered, nutrient-enriched waters, so it may not spread from Port Phillip Bay into the adjacent oceanic waters of Bass Strait; however, in view of S. spallanzanii's current high abundance, fecundity and extended spawning periodicity, there is a high risk of future range expansions, mediated by shipping, into other temperate-water ports.
Bathymetric patterns of genetic variation in a deep-sea protobranch bivalve, Deminucula atacellana
Marine Biology - - 1998
M. R. Chase, R. J. Etter, M. A. Rex, J. M. Quattro
The origin of the deep-sea benthic fauna is poorly understood and represents an enormous gap in our understanding of basic evolutionary phenomena. One obstacle to studying evolutionary patterns in the deep sea has been the technical difficulty of measuring genetic variation in species that are typically minute, rare, and must be recovered from extreme depths. We used molecular genetic techniques to quantify variation in the 16S rRNA mitochondrial gene within and among populations of the common protobranch bivalve Deminucula atacellana (Schenck, 1939). We analyzed 89 individuals from nine samples collected in the 1960s along a depth gradient from 1100 to 3800 m in the western North Atlantic. Genetic variability within populations is much lower than between populations, and peak haplotype numbers occur near the center of its depth distribution. Continental slope (<2500 m) and rise (>2500 m) populations were genetically distinct despite the lack of any obvious topographic or oceanographic features that would impede gene flow. These findings indicate that the deep-sea macrofauna can have strong population structure over small (134 km) spatial scales, similar to that observed in shallow-water and terrestrial organisms. This surprisingly high biodiversity at the genetic level affords the potential for adaptation and evolutionary diversification, the ultimate historical causes of high species diversity in the deep-sea benthos.
Temperature ecotypes near the southern boundary of the kelp Laminaria saccharina
Marine Biology - Tập 97 - Trang 575-580 - 1988
V. A. Gerard, K. R. Du Bois
Effects of temperature on survival, growth, and photosynthesis were compared for two USA populations of Laminaria saccharina Lamour. One population was located in New York State, near the southern latitudinal boundary of the species in the western North Atlantic. This southern boundary population was exposed to ambient temperatures ≧20°C for about 6 wk each summer. The second population was located in Maine, toward the center of the latitudinal range of the species, and was rarely exposed to temperatures>17°C. sporophytes from the New York (NY) population exhibited greater tolerance of high temperature than plants from the Maine (ME) site. Juvenile sporophytes from the two sites had similar rates of survivorship and growth at temperatures below 20°C, but showed different responses at 20°C in laboratory experiments. NY plants survived and grew for 6 wk at 20°C. ME plants showed negative growth during wk 2 and 100% mortality during wk 3. NY and ME plants held in situ at the NY site during June to September, 1985, also exhibited differential survivorship when ambient temperatures exceeded 20°C. Results of photosynthesis and dark respiration measurements on NY and ME plants grown at various temperatures suggested that the high-temperature tolerance of NY plants was attributable to their ability to maintain positive daily net C-fixation at 20°C. The high-temperature tolerance of the NY plants appeared to be due to genetic adaptation and is probably crucial to the persistence of the species near its southern boundary.
Direct estimation of natural mortality rates for littoral marine fishes using populational data from a marine reserve
Marine Biology - Tập 137 - Trang 1067-1076 - 2000
E. Macpherson, A. García-Rubies, A. Gordoa
 Visual censuses conducted in a marine reserve (Medas Islands) were used to estimate the natural mortality rates (M) for five common fish species in the NW Mediterranean Sea (Coris julis, Diplodus annularis, D. sargus, Serranus cabrilla and Symphodus roissali). Visual censuses of these same five species were also performed at three sites in unprotected areas of the coast where both commercial and sport fishing activity was normal. Censuses were conducted over a 3 year period. Estimates of M in the 3 years displayed scant seasonal or interannual variation, which may mean that the populations were in equilibrium during that period. The results of this study showed that the relationships between M and the growth parameters and maximum life span were unclear, and considerable caution is therefore recommended when using indirect methods of estimating M based on those parameters. For certain species the values of M were equal to or greater than the estimated total mortality in the exploited areas. The virtual absence of piscivorous predators in the unprotected area as a consequence of the high level of fishing in that area contrasts with the high abundance of such predators in the marine reserve. Since predation is the main contributor to M, estimated mortality in the unprotected areas is attributable nearly entirely to fishing. It is suggested that M may vary according to alterations taking place in conditions in the ecosystem inhabited by a species and thus that use of a value of M for a pristine population cannot be extrapolated to exploited areas.
Tổng số: 8,650   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10