Machine Learning

Công bố khoa học tiêu biểu

Sắp xếp:  
The true sample complexity of active learning
Machine Learning - Tập 80 - Trang 111-139 - 2010
Maria-Florina Balcan, Steve Hanneke, Jennifer Wortman Vaughan
We describe and explore a new perspective on the sample complexity of active learning. In many situations where it was generally believed that active learning does not help, we show that active learning does help in the limit, often with exponential improvements in sample complexity. This contrasts with the traditional analysis of active learning problems such as non-homogeneous linear separators or depth-limited decision trees, in which Ω(1/ε) lower bounds are common. Such lower bounds should be interpreted carefully; indeed, we prove that it is always possible to learn an ε-good classifier with a number of samples asymptotically smaller than this. These new insights arise from a subtle variation on the traditional definition of sample complexity, not previously recognized in the active learning literature.
Coupling matrix manifolds assisted optimization for optimal transport problems
Machine Learning - Tập 110 - Trang 533-558 - 2021
Dai Shi, Junbin Gao, Xia Hong, S. T. Boris Choy, Zhiyong Wang
Optimal transport (OT) is a powerful tool for measuring the distance between two probability distributions. In this paper, we introduce a new manifold named as the coupling matrix manifold (CMM), where each point on this novel manifold can be regarded as a transportation plan of the optimal transport problem. We firstly explore the Riemannian geometry of CMM with the metric expressed by the Fisher information. These geometrical features can be exploited in many essential optimization methods as a framework solving all types of OT problems via incorporating numerical Riemannian optimization algorithms such as gradient descent and trust region algorithms in CMM manifold. The proposed approach is validated using several OT problems in comparison with recent state-of-the-art related works. For the classic OT problem and its entropy regularized variant, it is shown that our method is comparable with the classic algorithms such as linear programming and Sinkhorn algorithms. For other types of non-entropy regularized OT problems, our proposed method has shown superior performance to other works, whereby the geometric information of the OT feasible space was not incorporated within.
Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model
Machine Learning - Tập 91 - Trang 325-349 - 2013
Mohammad Gheshlaghi Azar, Rémi Munos, Hilbert J. Kappen
We consider the problems of learning the optimal action-value function and the optimal policy in discounted-reward Markov decision processes (MDPs). We prove new PAC bounds on the sample-complexity of two well-known model-based reinforcement learning (RL) algorithms in the presence of a generative model of the MDP: value iteration and policy iteration. The first result indicates that for an MDP with N state-action pairs and the discount factor γ∈[0,1) only O(Nlog(N/δ)/((1−γ)3 ε 2)) state-transition samples are required to find an ε-optimal estimation of the action-value function with the probability (w.p.) 1−δ. Further, we prove that, for small values of ε, an order of O(Nlog(N/δ)/((1−γ)3 ε 2)) samples is required to find an ε-optimal policy w.p. 1−δ. We also prove a matching lower bound of Θ(Nlog(N/δ)/((1−γ)3 ε 2)) on the sample complexity of estimating the optimal action-value function with ε accuracy. To the best of our knowledge, this is the first minimax result on the sample complexity of RL: the upper bounds match the lower bound in terms of N, ε, δ and 1/(1−γ) up to a constant factor. Also, both our lower bound and upper bound improve on the state-of-the-art in terms of their dependence on 1/(1−γ).
Is Combining Classifiers with Stacking Better than Selecting the Best One?
Machine Learning - Tập 54 Số 3 - Trang 255-273 - 2004
Sašo Džeroski, Bernard Ženko
Support-vector networks
Machine Learning - Tập 20 Số 3 - Trang 273-297 - 1995
Corinna Cortes, Vladimir Vapnik
From machine learning to machine reasoning
Machine Learning - Tập 94 Số 2 - Trang 133-149 - 2014
Léon Bottou
A nearest hyperrectangle learning method
Machine Learning - - 1991
Steven L. Salzberg
Constructing generative logical models for optimisation problems using domain knowledge
Machine Learning - Tập 109 - Trang 1371-1392 - 2019
Ashwin Srinivasan, Lovekesh Vig, Gautam Shroff
In this paper we seek to identify data instances with a low value of some objective (or cost) function. Normally posed as optimisation problems, our interest is in problems that have the following characteristics: (a) optimal, or even near-optimal solutions are very rare; (b) it is expensive to obtain the value of the objective function for large numbers of data instances; and (c) there is domain knowledge in the form of experience, rules-of-thumb, constraints and the like, which is difficult to translate into the usual constraints for numerical optimisation procedures. Here we investigate the use of Inductive Logic Programming (ILP) to construct models within a procedure that progressively attempts to increase the number of near-optimal solutions. Using ILP in this manner requires a change in focus from discriminatory models (the usual staple for ILP) to generative models. Using controlled datasets, we investigate the use of probability-sampling of solutions based on the estimated cost of clauses found using ILP. Specifically, we compare the results obtained against: (a) simple random sampling; and (b) generative deep network models that use a low-level encoding and automatically construct higher-level features. Our results suggest: (1) Against each of the alternatives, probability-sampling from ILP-constructed models contain more near-optimal solutions; (2) The key to the effectiveness of ILP-constructed models is the availability of domain knowledge. We also demonstrate the use of ILP in this manner on two real-world problems from the area of drug-design (predicting solubility and binding affinity), using domain knowledge of chemical ring structures and functional groups. Taken together, our results suggest that generative modelling using ILP can be very effective for optimisation problems where: (a) the number of training instances to be used is restricted, and (b) there is domain knowledge relevant to low-cost solutions.
An Efficient Method To Estimate Bagging's Generalization Error
Machine Learning - Tập 35 - Trang 41-55 - 1999
David H. Wolpert, William G. Macready
Bagging (Breiman, 1994a) is a technique that tries to improve a learning algorithm's performance by using bootstrap replicates of the training set (Efron & Tibshirani, 1993, Efron, 1979). The computational requirements for estimating the resultant generalization error on a test set by means of cross-validation are often prohibitive, for leave-one-out cross-validation one needs to train the underlying algorithm on the order of mν times, where m is the size of the training set and ν is the number of replicates. This paper presents several techniques for estimating the generalization error of a bagged learning algorithm without invoking yet more training of the underlying learning algorithm (beyond that of the bagging itself), as is required by cross-validation-based estimation. These techniques all exploit the bias-variance decomposition (Geman, Bienenstock & Doursat, 1992, Wolpert, 1996). The best of our estimators also exploits stacking (Wolpert, 1992). In a set of experiments reported here, it was found to be more accurate than both the alternative cross-validation-based estimator of the bagged algorithm's error and the cross-validation-based estimator of the underlying algorithm's error. This improvement was particularly pronounced for small test sets. This suggests a novel justification for using bagging—more accurate estimation of the generalization error than is possible without bagging.
Tikhonov, Ivanov and Morozov regularization for support vector machine learning
Machine Learning - Tập 103 - Trang 103-136 - 2015
Luca Oneto, Sandro Ridella, Davide Anguita
Learning according to the structural risk minimization principle can be naturally expressed as an Ivanov regularization problem. Vapnik himself pointed out this connection, when deriving an actual learning algorithm from this principle, like the well-known support vector machine, but quickly suggested to resort to a Tikhonov regularization schema, instead. This was, at that time, the best choice because the corresponding optimization problem is easier to solve and in any case, under certain hypothesis, the solutions obtained by the two approaches coincide. On the other hand, recent advances in learning theory clearly show that the Ivanov regularization scheme allows a more effective control of the learning hypothesis space and, therefore, of the generalization ability of the selected hypothesis. We prove in this paper the equivalence between the Ivanov and Tikhonov approaches and, for the sake of completeness, their connection to Morozov regularization, which has been show to be useful when effective estimation of the noise in the data is available. We also show that this equivalence is valid under milder conditions on the loss function with respect to Vapnik’s original proposal. These results allows us to derive several methods for performing SRM learning according to an Ivanov or Morozov regularization scheme, but using Tikhonov-based solvers, which have been thoroughly studied in the last decades and for which very efficient implementations have been proposed.
Tổng số: 1,819   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 182