Journal of Experimental & Clinical Cancer Research

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
RETRACTED ARTICLE: SIRT6 drives epithelial-to-mesenchymal transition and metastasis in non-small cell lung cancer via snail-dependent transrepression of KLF4
Journal of Experimental & Clinical Cancer Research - Tập 37 - Trang 1-11 - 2018
Ziming Li, Jia Huang, Shengping Shen, Zhenping Ding, Qingquan Luo, Zhiwei Chen, Shun Lu
Epithelial-to-mesenchymal transition (EMT) contributes to the invasion and metastasis of epithelial tumors. Sirtuin 6 (SIRT6), an NAD-dependent deacetylase, is known to promote metastasis of non-small cell lung cancer (NSCLC). In this work, we determined the role of SIRT6 in the EMT of NSCLC cells and identified the key EMT-related genes involved in the oncogenic activity of SIRT6. We report that depletion of SIRT6 inhibits transforming growth factor-β1 (TGF-β1)-induced EMT in A549 and H1299 NSCLC cells, which is rescued by ectopic expression of SIRT6. Knockdown of SIRT6 leads to a reduction in Snail protein without affecting the mRNA level. Immunoprecipitation experiments demonstrate a physical association between SIRT6 and Snail. SIRT6 deacetylates Snail and prevents its proteasomal degradation. Silencing of Snail blunts SIRT6-induced NSCLC cell migration and invasion, while overexpression of Snail restores the invasion and EMT in SIRT6-depleted NSCLC cells. SIRT6 depletion leads to an upregulation of kruppel-like factor 4 (KLF4) and reduced Snail binding to the promoter of Klf4 in NSCLC cells. Knockdown of KLF4 rescues the invasive capacity in SIRT6-depleted NSCLC cells. Conversely, co-expression of KLF4 impairs SIRT6-induced aggressive behavior. In vivo data further demonstrate that SIRT6-induced NSCLC metastasis is antagonized by overexpression of KLF4. These findings provide mechanistic insights into the pro-metastatic activity of SIRT6 and highlight the role of the SIRT6/Snail/KLF4 axis in regulating EMT and invasion of NSCLC cells.
Radiation induces NORAD expression to promote ESCC radiotherapy resistance via EEPD1/ATR/Chk1 signalling and by inhibiting pri-miR-199a1 processing and the exosomal transfer of miR-199a-5p
Journal of Experimental & Clinical Cancer Research - Tập 40 - Trang 1-22 - 2021
Yuchen Sun, Jizhao Wang, Yuan Ma, Jing Li, Xuanzi Sun, Xu Zhao, Xiaobo Shi, Yunfeng Hu, Fengyi Qu, Xiaozhi Zhang
Radioresistance, a poorly understood phenomenon, results in the failure of radiotherapy and subsequent local recurrence, threatening a large proportion of patients with ESCC. To date, lncRNAs have been reported to be involved in diverse biological processes, including radioresistance. FISH and qRT–PCR were adopted to examine the expression and localization of lncRNA-NORAD, pri-miR-199a1 and miR-199a-5p. Electron microscopy and nanoparticle tracking analysis (NTA) were conducted to observe and identify exosomes. High-throughput microRNAs sequencing and TMT mass spectrometry were performed to identify the functional miRNA and proteins. A series of in vitro and in vivo experiments were performed to investigate the biological effect of NORAD. ChIP, RIP-qPCR, co-IP and dual-luciferase reporter assays were conducted to explore the interaction of related RNAs and proteins. We show here that DNA damage activates the noncoding RNA NORAD, which is critical for ESCC radioresistance. NORAD was expressed at high levels in radioresistant ESCC cells. Radiation treatment promotes NORAD expression by enhancing H3K4me2 enrichment in its sequence. NORAD knockdown cells exhibit significant hypersensitivity to radiation in vivo and in vitro. NORAD is required to initiate the repair and restart of stalled forks, G2 cycle arrest and homologous recombination repair upon radiation treatment. Mechanistically, NORAD inhibits miR-199a-5p expression by competitively binding PUM1 from pri-miR-199a1, inhibiting the processing of pri-miR-199a1. Mature miR-199a-5p in NORAD knockdown cells is packaged into exosomes; miR-199a-5p restores the radiosensitivity of radioresistant cells by targeting EEPD1 and then inhibiting the ATR/Chk1 signalling pathway. Simultaneously, NORAD knockdown inhibits the ubiquitination of PD-L1, leading to a better response to radiation and anti-PD-1 treatment in a mouse model. Based on the findings of this study, lncRNA-NORAD represents a potential treatment target for improving the efficiency of immunotherapy in combination with radiation in ESCC.
Synergistic killing effects of homoharringtonine and arsenic trioxide on acute myeloid leukemia stem cells and the underlying mechanisms
Journal of Experimental & Clinical Cancer Research - Tập 38 Số 1 - 2019
Ming Tan, Qian Zhang, Xiaohong Yuan, Yuanzhong Chen, Yong Wu
The expression and role of protein kinase C (PKC) epsilon in clear cell renal cell carcinoma
Journal of Experimental & Clinical Cancer Research - Tập 30 - Trang 1-9 - 2011
Shengjie Guo, Chengqiang Mo, Junxing Chen, Shaopeng Qiu, Jintao Zhuang, Bin Huang, Jincheng Pan, Xiaopeng Mao, Zhu Wang, Kaiyuan Cao, Xiubo Li
Protein kinase C epsilon (PKCε), an oncogene overexpressed in several human cancers, is involved in cell proliferation, migration, invasion, and survival. However, its roles in clear cell renal cell carcinoma (RCC) are unclear. This study aimed to investigate the functions of PKCε in RCC, especially in clear cell RCC, to determine the possibility of using it as a therapeutic target. By immunohistochemistry, we found that the expression of PKCε was up-regulated in RCCs and was associated with tumor Fuhrman grade and T stage in clear cell RCCs. Clone formation, wound healing, and Borden assays showed that down-regulating PKCε by RNA interference resulted in inhibition of the growth, migration, and invasion of clear cell RCC cell line 769P and, more importantly, sensitized cells to chemotherapeutic drugs as indicated by enhanced activity of caspase-3 in PKCε siRNA-transfected cells. These results indicate that the overexpression of PKCε is associated with an aggressive phenotype of clear cell RCC and may be a potential therapeutic target for this disease.
CDK4 IVS4-nt40 AA genotype and obesity-associated tumors/cancer in Italians – a case-control study
Journal of Experimental & Clinical Cancer Research - Tập 28 - Trang 1-5 - 2009
Ramachandran Meenakshisundaram, Claudia Gragnoli
Cell cycle checkpoint regulation is crucial for prevention of tumor in mammalian cells. Cyclin-dependant kinase 4 (CDK4) is important in cell cycle regulation, as it controls the G1-S phase of the cell cycle. CDK4 has potential mitogenic properties through phosphorylation of target proteins. We aimed at identifying a role of CDK4 IVS4-nt40 G→A gene variant in benign and/or malignant tumors and in obesity-associated benign and/or malignant tumors in an Italian adult subject dataset. We recruited 263 unrelated Italian subjects: 106 subjects had at least one benign tumor and 46 subjects had at least one malignant tumor, while 116 subjects had at least two tumors and/or cancers. We collected BMI data for 90% of them: 186 subjects had a BMI≥30 Kg/m2 and 52 subjects had a BMI ≥ 30 Kg/m2. We performed statistical power calculations in our datasets. DNA samples were directly sequenced with specific primers for the CDK4 IVS4-nt40 G→A variant. Genotype association tests with disease were performed. In our study, no significant association of the CDK4 IVS4-nt40 AA genotype with cancer and/or tumors/cancer are/is detected. However, the CDK4 IVS4-nt40 AA genotype is significantly associated with cancer and tumors/cancer in obese patients. This finding is interesting since obesity is a risk factor for tumors and cancer. This study should prompt further work aiming at establishing the role of CDK4 in contributing to tumor/cancer genetic risk predisposition, as well as its role as a potentially effective therapeutic target gene for obesity-associated tumor/cancer management.
Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma
Journal of Experimental & Clinical Cancer Research - - 2008
Erkan Topkan, Ali Aydın Yavuz, Mehmet Aydın, Cem Önal, Fuat Yapar, Mustafa Yavuz
Estrogen receptor α (ERα) mediates 17β-estradiol (E2)-activated expression of HBO1
Journal of Experimental & Clinical Cancer Research - Tập 29 - Trang 1-7 - 2010
Wen-zhong Wang, Hai-ou Liu, Yi-hong Wu, Yi Hong, Jun-wu Yang, Ye-heng Liu, Wei-bin Wu, Lei Zhou, Lin-lin Sun, Jie-jie Xu, Xiao-jing Yun, Jian-xin Gu
HBO1 (histone acetyltransferase binding to ORC1) is a histone acetyltransferase (HAT) which could exert oncogenic function in breast cancer. However, the biological role and underlying mechanism of HBO1 in breast cancer remains largely unknown. In the current study, we aimed to investigate the role of HBO1 in breast cancer and uncover the underlying molecular mechanism. Immunohistochemistry was applied to detect HBO1 protein expression in breast cancer specimens (n = 112). The expression of protein level was scored by integral optical density (IOD) for further statistical analyses using SPSS. Real-time PCR was used to simultaneously measure mRNA levels of HBO1. The HBO1 protein expression in breast cancer cells was confirmed by western blot. HBO1 was highly expressed in breast cancer tissues and significantly correlated with estrogen receptor α (ERα) (p < 0.001) and progestational hormone (PR) (p = 0.002). HBO1 protein level also correlated positively with histology grade in ERα positive tumors (p = 0.016) rather than ERα negative tumors. 17β-estradiol (E2) could upregulate HBO1 gene expression which was significantly inhibited by ICI 182,780 or ERα RNAi. E2-increased HBO1 protein expression was significantly suppressed by treatment with inhibitor of MEK1/2 (U0126) in T47 D and MCF-7 cells. HBO1 was an important downstream molecule of ERα, and ERK1/2 signaling pathway may involved in the expression of HBO1 increased by E2.
Correction to: Abnormally elevated USP37 expression in breast cancer stem cells regulates stemness, epithelial-mesenchymal transition and cisplatin sensitivity
Journal of Experimental & Clinical Cancer Research - Tập 40 - Trang 1-2 - 2021
Tao Qin, Bai Li, Xiaoyue Feng, Shujun Fan, Lei Liu, Dandan Liu, Jun Mao, Ying Lu, Jinfeng Yang, Xiaotang Yu, Qingqing Zhang, Jun Zhang, Bo Song, Man Li, Lianhong Li
Graphene oxide arms oncolytic measles virus for improved effectiveness of cancer therapy
Journal of Experimental & Clinical Cancer Research - Tập 38 - Trang 1-16 - 2019
Mao Xia, Dongjun Luo, Jie Dong, Meihong Zheng, Gang Meng, Junhua Wu, Jiwu Wei
Replication-competent oncolytic viruses (OVs) have been proven to be a potent anticancer weapon for clinical therapy. The preexisting neutralizing antibody in patients is a big challenge for oncolytic efficacy of OVs. Graphene oxide sheets (GOS) possess excellent biological compatibility and are easy to decorate for targeted delivery. We generated PEI-GOS-PEG-FA (Polyethyleneimine-Graphene oxide sheets-Polyethylene glycol-Folic acid). After intravenous injection, the distribution of PEI-GOS-PEG-FA in tumor-bearing mice was visualized by the IVIS Lumina XR system. Then, the oncolytic measles virus (MV-Edm) was coated with PEI-GOS-PEG-FA to form a viral-GOS complex (GOS/MV-Edm). The oncolytic effects of GOS/MV-Edm were investigated both in vitro and in vivo. GOS/MV-Edm exhibited higher infectivity and enhanced oncolysis. In tumor-bearing mice, GOS/MV-Edm had significantly elevated viral replication within the tumor mass, and achieved an improved antitumor effect. Then, we confirmed that GOS/MV-Edm entered cancer cells via the folate receptor instead of CD46, a natural cognate receptor of MV-Edm. GOS/MV-Edm remained the infectivity in murine cells that lack CD46. Finally, we found that GOS/MV-Edm was effectively protected from neutralization in the presence of antiserum both in vitro and in vivo. In passively antiserum immunized tumor-bearing mice, the survival was remarkably improved with intravenous injection of GOS/MV-Edm. Our findings demonstrate that GOS/MV-Edm displays significantly elevated viral replication within the tumor mass, leading to an improved antitumor effect in solid tumor mouse model. Our study provided a novel strategy to arm OVs for more efficient cancer therapy. That may become a promising therapeutic strategy for cancer patients.
Correction to: Knockdown of FOXO3a induces epithelial-mesenchymal transition and promotes metastasis of pancreatic ductal adenocarcinoma by activation of the β-catenin/TCF4 pathway through SPRY2
Journal of Experimental & Clinical Cancer Research - Tập 40 - Trang 1-5 - 2021
Jun Li, Rumeng Yang, Yuting Dong, Manyao Chen, Yu Wang, Guoping Wang
Tổng số: 2,521   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10