Institute of Experimental Botany
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Effects of copper on the growth, photosynthesis and nutrient concentrations of Phaseolus plants
Institute of Experimental Botany - Tập 34 - Trang 179-193
Bean plants (Phaseolus vulgaris L. var. Zargana Kavala) were grown under conditions of increasing Cu concentrations in the growth medium (0.5-160.5 µM). Generally, the Cu concentrations between 0.5-1.5 µM were deficient, 1.5-10.5 µM were optimal, and 10.5-160.5 µM were toxic to plant growth. The Cu toxicity was associated with marked increases in plant tissue Cu concentrations. Under the Cu-deficient and optimal growth conditions, Cu was located primarily in the leaves. Under Cu toxicity, it was primarily sequestered in the roots. With increasing Cu in the growth medium, there was a positive correlation between Cu concentrations in the roots, stems and leaves, Ca in the roots, and K and Mg in the leaves. In contrast, Ca concentrations in the leaves and stems showed a negative correlation. The chlorophyll (Chl) concentration increased with increasing leaf Cu concentration, however, the Chl a/b ratio decreased. Since with an increasing leaf Cu concentration the leaf area decreased more markedly than the leaf dry mass, the net photosynthetic rate (PN) per leaf area increased and per dry mass decreased. The increase in PN per leaf area was almost entirely accounted for by the increase in Chl concentration. The initial Chl fluorescence (F0) increased with increasing leaf Cu concentration. The ratio of variable to maximum fluorescence (Fv/Fm) under Cu toxicity decreased. The half-time for the rise from F0 to Fm (t1/2) remained relatively unchanged with increasing leaf Cu concentration. Therefore the Cu-stress caused a small decrease in the efficiency of photosystem 2 photochemistry, but its primary effect was on growth.
Pigment composition and functional state of the thylakoid membranes during preparation of samples for pigment-protein complexes separation by nondenaturing gel electrophoresis
Institute of Experimental Botany - Tập 48 - Trang 475-480 - 2010
The present study was conducted to examine changes in photosynthetic pigment composition and functional state of the thylakoid membranes during the individual steps of preparation of samples that are intended for a separation of pigmentprotein complexes by nondenaturing polyacrylamide gel electrophoresis. The thylakoid membranes were isolated from barley leaves (Hordeum vulgare L.) grown under low irradiance (50 μmol m−2 s−1). Functional state of the thylakoid membrane preparations was evaluated by determination of the maximal photochemical efficiency of photosystem (PS) II (FV/FM) and by analysis of excitation and emission spectra of chlorophyll a (Chl a) fluorescence at 77 K. All measurements were done at three phases of preparation of the samples: (1) in the suspensions of osmotically-shocked broken chloroplasts, (2) thylakoid membranes in extraction buffer containing Tris, glycine, and glycerol and (3) thylakoid membranes solubilized with a detergent decyl-β-D-maltosid. FV/FM was reduced from 0.815 in the first step to 0.723 in the second step and to values close to zero in solubilized membranes. Pigment composition was not pronouncedly changed during preparation of the thylakoid membrane samples. Isolation of thylakoid membranes affected the efficiency of excitation energy transfer within PSII complexes only slightly. Emission and excitation fluorescence spectra of the solubilized membranes resemble spectra of trimers of PSII light-harvesting complexes (LHCII). Despite a disrupted excitation energy transfer from LHCII to PSII antenna core in solubilized membranes, energy transfer from Chl b and carotenoids to emission forms of Chl a within LHCII trimers remained effective.
Xanthophyll cycle activity in detached barley leaves senescing under dark and light
Institute of Experimental Botany - Tập 43 - Trang 117-124 - 2005
Senescence-induced changes in the xanthophyll cycle activity and chlorophyll (Chl) fluorescence parameters were compared in detached barley (Hordeum vulgare L.) leaf segments kept for 6 d in darkness or under continuous “ white light” (90 μmol m−2 s−1). Before detachment of the leaf segments, the plants were grown at periodic regime [12 h light (90 μmol m−2 s−1)/12 h dark]. The de-epoxidation state of the xanthophyll cycle pigments (DEPS) in the leaf samples was determined immediately (the actual DEPS), after 1 h of dark-adaptation (the residual DEPS), and during 14 min of a high-irradiance (HI) exposure (500 μmol m−2 s−1) (HI-induced DEPS). In the light-senescing segments, senescence was delayed pronouncedly compared to dark-senescing ones as the Chl content, the photosystem 2 photochemistry, and electron transport processes were highly maintained. Further, the actual DEPS increased, probably due to the increased mean photon dose. The HI-induced increase in the DEPS was stimulated in the light-senescing segments, whereas it was slowed down in the dark-senescing ones. However, after the 14 min HI-exposure of the dark-senescing segments the HI-induced DEPS was not markedly lower than in the mature leaves, which indicated the maintenance of the xanthophyll cycle operation.
Influence of low phosphorus concentration on leaf photosynthetic characteristics and antioxidant response of rice genotypes
Institute of Experimental Botany - Tập 55 - Trang 285-293 - 2016
Influence of different phosphorus concentrations was studied in four rice varieties (Akhanphou, MTU1010, RP BIO 226, and Swarna) differing in their tolerance to low phosphorus. There was an increase in shoot and root dry mass with the increase in phosphorus concentration. At the low phosphorus concentration at both tillering and reproductive stages, Swarna, followed by Akhanphou, recorded maximum biomass for both roots and shoots, while the minimum was observed in RP BIO 226. Reduction in photosynthetic rate, stomatal conductance, transpiration rate, and internal CO2 concentration at low phosphorus concentrations were observed at both tillering and reproductive stages in all the genotypes. In low phosphorus, maximum photosynthetic rate was found in Swarna followed by Akhanphou. Phosphorus deficiency did not alter the maximum efficiency of PSII photochemistry, however, there was a reduction in effective PSII quantum yield, electron transport rate, and coefficient of photochemical quenching, while the coefficient of nonphotochemical quenching was higher in the low phosphorus-treated plants. Prolonged exposure to excessive energy and failure to utilize the energy in carbon-reduction cycle induced the generation of reactive oxygen species, which affected PSII as indicated by the fluorescence traits. The reduction was less severe in case of Swarna and Akhanphou. The activities of superoxide dismutase, peroxidase, and catalase increased in roots under low phosphorus concentration indicating that photoprotective mechanisms have been initiated in rice plants in response to phosphorus deficiency. Comparatively, Swarna and Akhanphou exhibited a higher biomass, higher photosynthetic rate, and better reactive oxygen species-scavenging ability which conferred tolerance under low phosphorus conditions.
Changes in Photosynthesis and Fruit Characteristics in Olive in Response to Assimilate Availability
Institute of Experimental Botany - Tập 41 - Trang 559-564 - 2003
The “source” level in the olive cultivar Leccino was varied by girdling at different stages of fruit growth. Afterwards, the effects on gas exchange, fruit growth, and ripening and blooming were studied. Girdling during fruit growth did not significantly influence net photosynthetic rate (P
N) except in the last phase of fruit growth when the P
N was reduced. In the girdled branch, P
N began to decrease at the onset of starch accumulation because fruit growth ceased. In mid-November stomatal conductance (g
s) and transpiration rate (E) were also reduced by girdling, whereas sub-stomatal CO2 concentration (C
i) increased in leaves from the girdled branches. The total chlorophyll content (Chl) tended to decrease in parallel with the reduced P
N. Girdling did not substantially influence the leaf and shoot water contents. The large availability of assimilates seems to cause an earlier fruit ripening. In general, girdling increased fruit dry mass. Healing before the time when the majority of pulp growth occurs reduced the effect of girdling. June girdling increased the pit dry mass. Girdling at the beginning of August and September, compared to the control, increased the pulp dry mass, but the pit dry mass did not differ with respect to the control. The percentage of oil in the fruit, on a dry mass basis, increased with August and September girdlings, but the percentage of oil in the pulp did not change. Girdling reduced shoot growth, but the internode length was unchanged. Girdling slightly stimulated differentiation of flower buds.
Using combined measurements of gas exchange and chlorophyll fluorescence to investigate the photosynthetic light responses of plant species adapted to different light regimes
Institute of Experimental Botany - - 2012
Are Calcium Ions and Calcium Channels Involved in the Mechanisms of Cu2+ Toxicity in Bean Plants? The Influence of Leaf Age
Institute of Experimental Botany - Tập 36 - Trang 267-278 - 1999
The influence of calcium channel blockers and ionophore on Cu2+-induced changes of the photosynthetic activity of runner bean plants (Phaseolus coccineus L.) was investigated. Excess Cu2+ was applied to leaves by injection or via the roots to examine a short/local or a long time/systemic effect of this metal, respectively. The changes in fluorescence parameters indicated that the mechanism of toxic action of Cu2+ ions on the photosynthetic apparatus was only partially connected with Ca2+ or Ca2+ channels. In young plants Ca2+ diminished especially photochemical and nonphotochemical dissipative processes induced by short- and long-term influence of excess Cu2+. Blocking of Ca2+ channels did not change direct Cu2+ action on the photosynthetic activity, however, their opening distinctly intensified the inhibitory effect of the metal. After a longer accumulation peri od the effect of Cu2+ ions did not change significantly due to modified Ca2+ penetration through membranes (except that caused by La3+). Copper directly introduced into older leaves diminished only at its highest concentration the activity both of the donor and acceptor sides of photosystem 2 (PS2) connected with Rfd decrease and increase of LNU. A similar effect was observed also after a long-term Cu2+ action, but disturbances on the acceptor side of PS2 were observed only at a higher Ca2+ content in the nutrient solution. Ca2+ ions, particularly after openning of channels, intensified direct inhibitory Cu2+ action on the photosynthetic activity expressed by decreased values of Fv/F0 and Rfd. Lanthanum and verapamil, at a lower Ca2+ content in the medium, decreased the photosynthetic activity of Cu2+-treated plants. This effect was also seen after additional Ca2+ supply to the leaves.
Irreversible changes in barley leaf chlorophyll fluorescence detected by the fluorescence temperature curve in a linear heating/cooling regime
Institute of Experimental Botany - Tập 46 Số 4 - Trang 537-546 - 2008
Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding
Institute of Experimental Botany - Tập 50 - Trang 447-457 - 2012
Flooding is common in lowlands and areas with high rainfall or excessive irrigation. A major effect of flooding is the deprivation of O2 in the root zone, which affects several biochemical and morphophysiological plant processes. The objective of this study was to elucidate biochemical and physiological characteristics associated with tolerance to O2 deficiency in two clonal cacao genotypes. The experiment was conducted in a greenhouse with two contrasting clones differing in flood tolerance: TSA-792 (tolerant) and TSH-774 (susceptible). Leaf gas exchange, chlorophyll (Chl) fluorescence, chemical composition and oxidative stress were assessed during 40 d for control and flooded plants. Flooding induced a decrease in net photosynthesis, stomatal conductance and transpiration of both genotypes. In flood conditions, the flood-susceptible clone showed changes in chlorophyll fluorescence, reductions in chlorophyll content and increased activity of peroxidase and polyphenol oxidase. Flooding also caused changes in macro- and micronutrients, total soluble sugars and starch concentrations in different plant organs of both genotypes. Response curves for the relationship between photosynthetically active radiation (PAR) and net photosynthetic rate (P
N) for flooded plants were similar for both genotypes. In flood conditions, the flood-susceptible clone exhibited (1) nonstomatal limitations to photosynthesis since decreased in maximum potential quantum yield of PSII (Fv/Fm) values indicated possible damage to the PSII light-harvesting complex; (2) oxidative stress; (3) increased leaf chlorosis; and (4) a reduction in root carbohydrate levels. These stresses resulted in death of several plants after 30 d of flooding.
Lüttge, U.: Physiological Ecology of Tropical Plants
Institute of Experimental Botany - Tập 36 - Trang 464-464 - 1999
Tổng số: 1,463
- 1
- 2
- 3
- 4
- 5
- 6
- 10