Environmental Geochemistry and Health

Công bố khoa học tiêu biểu

Sắp xếp:  
Temporal groundwater quality, health risks and source point management zonation of multi-aquifers in Jilin Qian’an, Northeastern China
Environmental Geochemistry and Health - Tập 45 - Trang 6069-6094 - 2023
Oluwafemi Adewole Adeyeye, Changlai Xiao, Achivir Stella Yawe, Zhihao Zhang, Weifei Yang, Uzodigwe Emmanuel Nnanwuba, Xiujuan Liang
Jilin Qian’an, located in Northeastern China's Songnen Plain, relies almost exclusively on groundwater for drinking. The quaternary phreatic aquifer (Q3) is distinguished by high geogenic fluoride and arsenic concentrations, which necessitates reliance on quaternary confined (Q1) and neogene confined (N) aquifers (deeper aquifers) as source point management (SPM) alternatives. However, deeper aquifers are contaminated, necessitating temporal monitoring and unique management strategies. Using 165 samples, this study investigated the appropriateness of deeper restricted aquifers as a continuous SPM alternative by assessing the spatiotemporal groundwater quality and human health risk of the multi-aquifers in Jilin Qian’an from the 1980s to the 2010s. In addition, a source point management zonation (SPMZ) was implemented to define the specific intervention necessary in various portions of the study area. Results indicate water quality parameters were within recommended limits for most samples except fluoride, while arsenic was the most significant heavy metal pollutant. Mean groundwater mineralization in all the aquifers increased with time. Deeper aquifers are still a better alternative to the shallow phreatic aquifer as groundwater quality in the study is of the order N > Q1 > Q3 in the respective aquifers. Cancer risk assessment (CR) shows increases from 2001 to the 2010s in all aquifers except in Q3. SPMZ delineated: High As and high F zones; high As and low F zones; high As zones; high F zones; low F zones; and safe zones. Localized intervention based on SPMZ is recommended, along with the use of alternative water sources.
Severity of zinc and iron malnutrition linked to low intake through a staple crop: a case study in east-central Pakistan
Environmental Geochemistry and Health - Tập 43 - Trang 4219-4233 - 2021
Muhammad Ishfaq, Abdul Wakeel, Muhammad Nadeem Shahzad, Aysha Kiran, Xuexian Li
Micronutrients deficiency in soil–plant and human is well-addressed; however, little is known about their spatial distribution, magnitude of deficiency and biological nexus. Zinc deficiency (ZnD) and iron-deficiency anemia (FeD) are two serious nutritional concerns which are negatively affecting human health. Herein, a survey-based case study was conducted in major wheat-based cropping system of east-central Pakistan. Soil and grain samples were collected from 125 field-grown wheat from 25 distinct sites/villages and GPS coordinates were taken for mapping. The collected samples were tags according to the names of 25 sites, i.e., UCs (union councils; an administrative unit). The quantified amount of zinc (Zn) or iron (Fe) in soil-wheat grains was compared with their recommended concentrations (RCZn, RCFe) for human nutrition. Additionally, clinical features of ZnD and FeD were diagnosed among local farmers who used to consume these grains, throughout the year, cultivated on their farm, and quantified their deficiency prevalence (ZnDP, FeDP). Results revealed, the collected 64% (0.54 to 5.25 mg kg−1) soils, and 96% (1.4 to 31 mg kg−1) grain samples are Zn-deficient (RCZn) along with ZnDP recorded among 68% of population. Meanwhile, FeD is quantified in 76% (1.86 to 15 mg kg−1) soil, 72% grain (2.1 to 134 mg kg−1) samples, and FeDP is found among 84% of studied population. A strong and positive correlation is developed in the Zn-or FeDP with their deficiencies in soil and grain by plotting multivariate analysis. In line with spatial distribution pattern, the UCs, namely, 141, 151, 159 and 132 are quantified severe deficient in Zn and Fe, and others are marginal or approaching to deficient level. Our findings rationalize the biological nexus of Zn and Fe, and accordingly, draw attention in the biofortification of staple crop as a win–win approach to combat the rising malnutrition concerns.
Glyphosate uses, adverse effects and alternatives: focus on the current scenario in Brazil
Environmental Geochemistry and Health - Tập 45 - Trang 9559-9582 - 2023
Leandro Goulart de Araujo, Daniel Froes Zordan, Alain Celzard, Vanessa Fierro
Brazil, a global frontrunner in pesticide consumption and sales, particularly glyphosate, appears to be at odds with other countries that increasingly ban these products in their territories. This study gathers the values of Acceptable Daily Intake and Maximum Residue Limits (MRL) in the European Union for dozens of substances and subsequently contrasts them with the corresponding benchmarks upheld in Brazil concerning its predominant crops. Furthermore, this study delves into the toxicity levels and the potential health ramifications of glyphosate on humans through the ingestion of food containing its residues. The findings from this research underscore a notable surge in glyphosate and pesticide sales and usage within Brazil over the past decade. In stark contrast to its European counterparts, Brazil not only sanctioned the sale and application of 474 new pesticides in 2019, but extended the authorization for glyphosate sales while downgrading its toxicity classification. Finally, this review not only uncovers disparities among research outcomes but also addresses the complexities of replacing glyphosate and introduces environmentally friendlier alternatives that have been subject to evaluation in the existing literature.
Major and trace elements in paddy soil contaminated by Pb–Zn mining: a case study of Kočani Field, Macedonia
Environmental Geochemistry and Health - - 2007
Tadej Dolenec, Todor Serafimovski, Goran Tasev, Meta Dobnikar, Matej Dolenec, Nastja Rogan
Air pollution and public health: emerging hazards and improved understanding of risk
Environmental Geochemistry and Health - Tập 37 - Trang 631-649 - 2015
Frank J. Kelly, Julia C. Fussell
Despite past improvements in air quality, very large parts of the population in urban areas breathe air that does not meet European standards let alone the health-based World Health Organisation Air Quality Guidelines. Over the last 10 years, there has been a substantial increase in findings that particulate matter (PM) air pollution is not only exerting a greater impact on established health endpoints, but is also associated with a broader number of disease outcomes. Data strongly suggest that effects have no threshold within the studied range of ambient concentrations, can occur at levels close to PM2.5 background concentrations and that they follow a mostly linear concentration–response function. Having firmly established this significant public health problem, there has been an enormous effort to identify what it is in ambient PM that affects health and to understand the underlying biological basis of toxicity by identifying mechanistic pathways—information that in turn will inform policy makers how best to legislate for cleaner air. Another intervention in moving towards a healthier environment depends upon the achieving the right public attitude and behaviour by the use of optimal air pollution monitoring, forecasting and reporting that exploits increasingly sophisticated information systems. Improving air quality is a considerable but not an intractable challenge. Translating the correct scientific evidence into bold, realistic and effective policies undisputedly has the potential to reduce air pollution so that it no longer poses a damaging and costly toll on public health.
Revealing drinking water quality issues and possible health risks based on water quality index (WQI) method in the Shanmuganadhi River basin of South India
Environmental Geochemistry and Health - - 2021
D. Karunanidhi, P. Aravinthasamy, T. Subramani, G. Muthusankar
Altitudinal patterns and controls of trace metal distribution in soils of a remote high mountain, Southwest China
Environmental Geochemistry and Health - Tập 40 - Trang 505-519 - 2017
Rui Li, Haijian Bing, Yanhong Wu, Jun Zhou, Zhongxiang Xiang
The aim of this study is to reveal the effects of regional human activity on trace metal accumulation in remote alpine ecosystems under long-distance atmospheric transport. Trace metals (Cd, Pb, and Zn) in soils of the Mt. Luoji, Southwest China, were investigated along a large altitudinal gradient [2200–3850 m above sea level (a.s.l.)] to elaborate the key factors controlling their distribution by Pb isotopic composition and statistical models. The concentrations of Cd, Pb, and Zn in the surface soils (O and A horizons) were relatively low at the altitudes of 3500–3700 m a.s.l. The enrichment factors of trace metals in the surface soils increased with altitude. After normalization for soil organic matter, the concentrations of Cd still increased with altitude, whereas those of Pb and Zn did not show a clear altitudinal trend. The effects of vegetation and cold trapping (CTE) (pollutant enrichment by decreasing temperature with increasing altitude) mainly determined the distribution of Cd and Pb in the O horizon, whereas CTE and bedrock weathering (BW) controlled that of Zn. In the A horizon, the distribution of Cd and Pb depended on the vegetation regulation, whereas that of Zn was mainly related to BW. Human activity, including ores mining and fossil fuels combustion, increased the trace metal deposition in the surface soils. The anthropogenic percentage of Cd, Pb, and Zn quantified 92.4, 67.8, and 42.9% in the O horizon, and 74.5, 33.9, and 24.9% in the A horizon, respectively. The anthropogenic metals deposited at the high altitudes of Mt. Luoji reflected the impact of long-range atmospheric transport on this remote alpine ecosystem from southern and southwestern regions.
Brief status of contamination in surface water of rivers of India by heavy metals: a review with pollution indices and health risk assessment
Environmental Geochemistry and Health - Tập 45 - Trang 2779-2801 - 2022
Akshay Botle, Sayli Salgaonkar, Rahul Tiwari, Shushama Ambadekar, Gayatri R. Barabde
Water is polluted via various means; among these, heavy metal (HM) contamination is of great concern because of the involvement of metal toxicity and its effect on aquatic environment. The significance and novelty of this study is that it focuses on assessment of HMs in the surface water of Indian rivers only from 1991 to 2021. For this, multivariate studies were used to find multiple sources of HMs. The average concentrations of Fe, Cr, Pb, Ni, Cd, Mn, Hg, Co, and As in surface water of rivers were found to far exceed the permitted limits established by both World Health Organisation and Bureau of Indian Standards. The HM indices like HM pollution, degree of contamination, evaluation index, water pollution, and toxicity load data all indicated that the rivers under investigation are heavily polluted by HMs. In this study, health risk assessment indicated non-carcinogenic effects of Fe, Cr, Cu, Pb, Cd, Mn, Hg, Co, and As in children and those of Fe, Cr, Pb, Cd, Hg, Co, and As in adults. Values investigated for Cancer index were higher for Cr, Pb, Ni, Cd, and As indicating a high risk of cancer development in adults and children via the ingestion pathway than the cutaneous pathway. Moreover, children are more prone to be exposed to both non-carcinogenic and carcinogenic effects of HMs than adults. To reduce human dangers, remediation approaches, such as environment-friendly, cost-effective adsorbents, phytoremediation and bio-remediation, as well as tools like bio-sensors, should be included in river management plans.
A follow-up study of the development of skin lesions associated with arsenic exposure duration
Environmental Geochemistry and Health - Tập 40 - Trang 2729-2738 - 2018
Binggan Wei, Jiangping Yu, Chang Kong, Hairong Li, Linsheng Yang, Yajuan Xia, Kegong Wu
Little information about the development of skin lesions in relation to arsenic exposure duration is available. Therefore, skin lesions in a cohort from the Bameng region of China were diagnosed in 2012 and 2017. The results indicated that the prevalence of hyperkeratosis, pigmentation and depigmentation in 2017 was 64.67, 6.67 and 12.67%. There were 42 and 34% of male subjects and female subjects suffered from skin lesions in 2012. Their morbidity rates were 10.43 and 8.98 per 1000 person-years. In 2017, the values were significantly increased. The prevalence and morbidity rate of skin lesions were positively correlated with age and arsenic levels in drinking water. Males had higher prevalence of skin lesions compared with female. However, the ≤ 40 years female group had higher prevalence of skin lesions. In addition, the increased rate of skin lesions prevalence was negatively correlated with arsenic levels in drinking water. The odds ratios (ORs) showed that the risks of skin lesions were positively associated with the proportion of inorganic arsenic (%iAs) and monomethylarsonic acid (%MMA) in urine, and negatively correlated with arsenic methylation capacity in both 2012 and 2017. It can be concluded that females immigrated from other areas were more susceptible to developing skin lesions. A certain cumulative arsenic exposure dose, which may be existing, significantly increased the prevalence of skin lesions. Longer arsenic exposure duration might elevate the toxicity of iAs to skin lesions and reduce the positive effects of arsenic methylation capacity on skin lesions.
Toxicants in folk remedies: implications of elevated blood lead in an American-born infant due to imported diaper powder
Environmental Geochemistry and Health - - 2017
Mateusz P. Karwowski, Suzette A. Morman, Geoffrey S. Plumlee, Terence Law, Mark D. Kellogg, Alan D. Woolf
Tổng số: 2,551   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 256