Drug Delivery and Translational Research
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
An updated review on application of 3D printing in fabricating pharmaceutical dosage forms
Drug Delivery and Translational Research - Tập 12 - Trang 2428-2462 - 2021
The concept of “one size fits all” followed by the conventional healthcare system has drawbacks in providing precise pharmacotherapy due to variation in the pharmacokinetics of different patients leading to serious consequences such as side effects. In this regard, digital-based three-dimensional printing (3DP), which refers to fabricating 3D printed pharmaceutical dosage forms with variable geometry in a layer-by-layer fashion, has become one of the most powerful and innovative tools in fabricating “personalized medicine” to cater to the need of therapeutic benefits for patients to the maximum extent. This is achieved due to the tremendous potential of 3DP in tailoring various drug delivery systems (DDS) in terms of size, shape, drug loading, and drug release. In addition, 3DP has a huge impact on special populations including pediatrics, geriatrics, and pregnant women with unique or frequently changing medical needs. The areas covered in the present article are as follows: (i) the difference between traditional and 3DP manufacturing tool, (ii) the basic processing steps involved in 3DP, (iii) common 3DP methods with their pros and cons, (iv) various DDS fabricated by 3DP till date with discussing few research studies in each class of DDS, (v) the drug loading principles into 3D printed dosage forms, and (vi) regulatory compliance.
Ameliorative effect of rubiadin-loaded nanocarriers in STZ-NA-induced diabetic nephropathy in rats: formulation optimization, molecular docking, and in vivo biological evaluation
Drug Delivery and Translational Research - Tập 12 - Trang 615-628 - 2021
Diabetic nephropathy (DN) is a significant source of end-stage renal illness all over the world in both developed and developing countries. The aim of the study was to optimize rubiadin-loaded niosomes (RLN) using Box-Behnken design for the management of streptozotocin-nicotinamide (STZ-NA)-induced DN in Wistar rats. The RLN were formulated by a “thin-layer hydration technique.” The optimization of RLN was done by Box-Behnken design; the independent variables were cholesterol (CHOL), Span 80, and methanol, while the dependent factors were the vesicle size, zeta potential, and entrapment efficiency. The optimized formulation was characterized for various biochemical parameters including anti-diabetic activity in Wistar rats. The optimized RLN presented vesicle size of 238 nm, zeta potential −68 mV, and entrapment efficiency 85%. A noteworthy decreased in blood glucose level was detected in STZ-NA-induced DN rats when orally treated with RLN (100 mg/kg/week and 200 mg/kg/week). Oral administration of RLN formulation considerably decreased the levels of urea, uric acid, and creatinine in DN rats. In addition, treatment of DN rats with RLN formulation considerably improves the level of TBARS, GSH, SOD, and CAT. The lipid profile of DN rats was also improved on treatment with RLN formulation. This study revealed that the prepared RLN formulation was successfully optimized by Box-Behnken design and found to be useful for the management of STZ-NA-induced DN in Wistar rats.
Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems
Drug Delivery and Translational Research - Tập 8 - Trang 617-632 - 2018
The current research work encompasses the development, characterization, and evaluation of self-assembled phospholipidic nano-mixed miceller system (SPNMS) of a poorly soluble BCS Class IV xanthone bioactive, mangiferin (Mgf) functionalized with co-delivery of vitamin E TPGS. Systematic optimization using I-optimal design yielded self-assembled phospholipidic nano-micelles with a particle size of < 60 nm and > 80% of drug release in 15 min. The cytotoxicity and cellular uptake studies performed using MCF-7 and MDA-MB-231 cell lines demonstrated greater kill and faster cellular uptake. The ex vivo intestinal permeability revealed higher lymphatic uptake, while in situ perfusion and in vivo pharmacokinetic studies indicated nearly 6.6- and 3.0-folds augmentation in permeability and bioavailability of Mgf. In a nutshell, vitamin E functionalized SPNMS of Mgf improved the biopharmaceutical performance of Mgf in rats for enhanced anticancer potency.
Lack of in vitro–in vivo correlation for a UC781-releasing vaginal ring in macaques
Drug Delivery and Translational Research - Tập 5 - Trang 27-37 - 2015
This study describes the preclinical development of a matrix-type silicone elastomer vaginal ring device designed to provide controlled release of UC781, a non-nucleoside reverse transcriptase inhibitor. Testing of both human- and macaque-sized rings in a sink condition in vitro release model demonstrated continuous UC781 release in quantities considered sufficient to maintain vaginal fluid concentrations at levels 82–860-fold higher than the in vitro IC50 (2.0 to 10.4 nM) and therefore potentially protect against mucosal transmission of HIV. The 100-mg UC781 rings were well tolerated in pig-tailed macaques, did not induce local inflammation as determined by cytokine analysis and maintained median concentrations in vaginal fluids of UC781 in the range of 0.27 to 5.18 mM during the course of the 28-day study. Analysis of residual UC781 content in rings after completion of both the in vitro release and macaque pharmacokinetic studies revealed that 57 and 5 mg of UC781 was released, respectively. The pharmacokinetic analysis of a 100-mg UC781 vaginal ring in pig-tailed macaques showed poor in vivo–in vitro correlation, attributed to the very poor solubility of UC781 in vaginal fluid and resulting in a dissolution-controlled drug release mechanism rather than the expected diffusion-controlled mechanism.
Stem cells technology: a powerful tool behind new brain treatments
Drug Delivery and Translational Research - Tập 8 - Trang 1564-1591 - 2018
Stem cell research has recently become a hot research topic in biomedical research due to the foreseen unlimited potential of stem cells in tissue engineering and regenerative medicine. For many years, medicine has been facing intense challenges, such as an insufficient number of organ donations that is preventing clinicians to fulfill the increasing needs. To try and overcome this regrettable matter, research has been aiming at developing strategies to facilitate the in vitro culture and study of stem cells as a tool for tissue regeneration. Meanwhile, new developments in the microfluidics technology brought forward emerging cell culture applications that are currently allowing for a better chemical and physical control of cellular microenvironment. This review presents the latest developments in stem cell research that brought new therapies to the clinics and how the convergence of the microfluidics technology with stem cell research can have positive outcomes on the fields of regenerative medicine and high-throughput screening. These advances will bring new translational solutions for drug discovery and will upgrade in vitro cell culture to a new level of accuracy and performance. We hope this review will provide new insights into the understanding of new brain treatments from the perspective of stem cell technology especially regarding regenerative medicine and tissue engineering.
Biological characterization of a novel hybrid copolymer carrier system based on glycogen
Drug Delivery and Translational Research - Tập 8 - Trang 73-82 - 2017
The effective drug delivery systems for cancer treatment are currently on high demand. In this paper, biological behavior of the novel hybrid copolymers based on polysaccharide glycogen were characterized. The copolymers were modified by fluorescent dyes for flow cytometry, confocal microscopy, and in vivo fluorescence imaging. Moreover, the effect of oxazoline grafts on degradation rate was examined. Intracellular localization, cytotoxicity, and internalization route of the modified copolymers were examined on HepG2 cell line. Biodistribution of copolymers was addressed by in vivo fluorescence imaging in C57BL/6 mice. Our results indicate biocompatibility, biodegradability, and non-toxicity of the glycogen-based hybrid copolymers. Copolymers were endocyted into the cytoplasm, most probably via caveolae-mediated endocytosis. Higher content of oxazoline in polymers slowed down cellular uptake. No strong colocalization of the glycogen-based probe with lysosomes was observed; thus, it seems that the modified externally administered glycogen is degraded in the same way as an endogenous glycogen. In vivo experiment showed relatively fast biodistribution and biodegradation. In conclusion, this novel nanoprobe offers unique chemical and biological attributes for its use as a novel drug delivery system that might serve as an efficient carrier for cancer therapeutics with multimodal imaging properties.
A novel scalable fabrication process for the production of dissolving microneedle arrays
Drug Delivery and Translational Research - Tập 9 - Trang 240-248 - 2018
Microneedle arrays have emerged as an alternative method for transdermal drug delivery. Although micromolding using a centrifugation method is widely used to prepare microneedles in laboratory, few researchers were focused on manufacturing processes capable of facile scale-up. A novel female mold was initially designed in this study, namely double-penetration female mold (DPFM) with the pinpoints covered by waterproof breather membrane which was beneficial to reduce the influence of gas resistance and solution viscosity. In addition, DPFM-based positive-pressure microperfusion technique (PPPT) was proposed for the scale-up fabrication of dissolving microneedle arrays (DMNA). In this method, polymer solution and base solution were poured into the DPFM by pressure difference, followed by drying and demolding. The results of optimal microscopy and SEM revealed that the obtained microneedles were uniformly distributed conical-shaped needles. The skin penetration test showed that DMNA prepared using PPPT were able to penetrate the rat skin with a high penetration rate. To realize the transition of microneedles fabrication from laboratory to industry, an automatic equipment was further designed in this study. Different from micromolding method using centrifugation, the equipment based on PPPT and DPFM has superiorities in the scale-up fabrication of microneedles in a highly effective, controllable, and scalable way.
Intraperitoneal delivery of paclitaxel by poly(ether-anhydride) microspheres effectively suppresses tumor growth in a murine metastatic ovarian cancer model
Drug Delivery and Translational Research - Tập 4 Số 2 - Trang 203-209 - 2014
Phospholipid–polyethylenimine conjugate-based micelle-like nanoparticles for siRNA delivery
Drug Delivery and Translational Research - Tập 1 - Trang 25-33 - 2010
Gene silencing using small interfering RNA (siRNA) is a promising therapeutic strategy for the treatment of various diseases, in particular, cancer. Recently, our group reported on a novel gene carrier, the micelle-like nanoparticle (MNP), based on the combination of a covalent conjugate of phospholipid and polyethylenimine (PLPEI) with polyethylene glycol (PEG) and lipids. These long-circulating MNPs loaded with plasmid DNA-mediated gene expression in distal tumors after systemic administration in vivo. In the current study, we investigated the potential of MNPs for siRNA delivery. MNPs were prepared by condensing siRNA with PLPEI at a nitrogen/phosphate ratio of 10, where the binding of siRNA is complete. The addition of a PEG/lipid coating to the PLPEI complexes generated particles with sizes of ca. 200 nm and a neutral surface charge compared with positively charged PLPEI polyplexes without the additional coating. MNPs protected the loaded siRNA against enzymatic digestion and enhanced the cellular uptake of the siRNA payload. MNPs carrying green fluorescent protein (GFP)-targeted siRNA effectively downregulated the gene in cells that stably express GFP. Finally, MNPs were non-toxic at a wide range of concentrations and for different cell lines.
Ion-pair formation combined with a penetration enhancer as a dual strategy to improve the transdermal delivery of meloxicam
Drug Delivery and Translational Research - Tập 8 - Trang 64-72 - 2017
The aim of the study was to develop a novel drug-in-adhesive patch for transdermal delivery of meloxicam (MLX). The formulation involved a strategy to combine a chemical enhancer with an ion-pair agent. Diethylamine (DETA) was selected as the counter ion to form the ion-pair agent MLX-DETA. MLX-DETA was characterized by nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). The ion-pair lifetime (T
life) of MLX-DETA was 164.1 μs. The water solubility of MLX-DETA was increased nearly 9.3-fold, compared with that of MLX. Oleic acid (OA) was selected as the chemical enhancer, and the optimized formulation consisted of 5% (w/w) MLX-DETA, 5% (w/w) oleic acid, and DURO-TAK® 87-4098 adhesive as the pressure-sensitive adhesive matrix. The permeation study in vitro showed that both the counter ion and chemical enhancer were effective in improving the skin permeation of MLX. Tissue distribution studies demonstrated that higher accumulation of MLX following application of the MLX-DETA patch to the skin could be obtained in rats compared with the MLX-patch group. In conclusion, to increase the skin absorption and obtain a sustained release for the transdermal delivery of MLX, preparation of a drug-in-adhesive patch by combining an ion pair (MLX-DETA) with a permeation enhancer (OA) is a suitable strategy.
Tổng số: 1,048
- 1
- 2
- 3
- 4
- 5
- 6
- 10