Data Mining and Knowledge Discovery

SCIE-ISI SCOPUS (1997-2023)

  1384-5810

  1573-756X

  Hà Lan

 

Cơ quản chủ quản:  Springer Netherlands , SPRINGER

Lĩnh vực:
Computer Science ApplicationsInformation SystemsComputer Networks and Communications

Phân tích ảnh hưởng

Các bài báo tiêu biểu

Experiencing SAX: a novel symbolic representation of time series
- 2007
Jessica Lin, Eamonn Keogh, Wei Li, Stefano Lonardi
The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances
Tập 31 Số 3 - Trang 606-660 - 2017
Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, Eamonn Keogh
InceptionTime: Finding AlexNet for time series classification
- 2020
Hassan Ismail Fawaz, Benjamín Lucas, Germain Forestier, Charlotte Pelletier, Daniel F. Schmidt, Jonathan Weber, Geoff Webb, Lhassane Idoumghar, Pierre Alain Muller, François Petitjean
Hierarchical Clustering Algorithms for Document Datasets
- 2005
Ying Zhao, George Karypis, Usama M. Fayyad
On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms
Tập 8 Số 3 - Trang 275-300 - 2004
Kenji Yamanishi, Jun’ichi Takeuchi, Graham Williams, Peter Milne
Computing LTS Regression for Large Data Sets
Tập 12 Số 1 - Trang 29-45 - 2006
Peter J. Rousseeuw, Katrien Van Driessen
The BOSS is concerned with time series classification in the presence of noise
Tập 29 Số 6 - Trang 1505-1530 - 2015
Patrick Schäfer
Survey on mining subjective data on the web
- 2012
Mikalai Tsytsarau, Themis Palpanas
Krimp: mining itemsets that compress
Tập 23 Số 1 - Trang 169-214 - 2011
Jilles Vreeken, Matthijs van Leeuwen, Arno Siebes
Brief Application Description; Visual Data Mining: Recognizing Telephone Calling Fraud
Tập 1 - Trang 225-231 - 1997
Kenneth C. Cox, Stephen G. Eick, Graham J. Wills, Ronald J. Brachman
Human pattern recognition skills are remarkable and in many situations far exceed the ability of automated mining algorithms. By building domain-specific interfaces that present information visually, we can combine human detection with machines' far greater computational capacity. We illustrate our ideas by describing a suite of visual interfaces we built for telephone fraud detection.