Cancer Discovery
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
The MYC oncogene encodes a transcription factor, MYC, whose broad effects make its precise oncogenic role enigmatically elusive. The evidence to date suggests that MYC triggers selective gene expression amplification to promote cell growth and proliferation. Through its targets, MYC coordinates nutrient acquisition to produce ATP and key cellular building blocks that increase cell mass and trigger DNA replication and cell division. In cancer, genetic and epigenetic derangements silence checkpoints and unleash MYC's cell growth– and proliferation-promoting metabolic activities. Unbridled growth in response to deregulated MYC expression creates dependence on MYC-driven metabolic pathways, such that reliance on specific metabolic enzymes provides novel targets for cancer therapy.
Significance: MYC's expression and activity are tightly regulated in normal cells by multiple mechanisms, including a dependence upon growth factor stimulation and replete nutrient status. In cancer, genetic deregulation of MYC expression and loss of checkpoint components, such as TP53, permit MYC to drive malignant transformation. However, because of the reliance of MYC-driven cancers on specific metabolic pathways, synthetic lethal interactions between MYC overexpression and specific enzyme inhibitors provide novel cancer therapeutic opportunities. Cancer Discov; 5(10); 1024–39. ©2015 AACR.
Non–small cell lung cancers (NSCLC) harboring anaplastic lymphoma kinase (ALK) gene rearrangements invariably develop resistance to the ALK tyrosine kinase inhibitor (TKI) crizotinib. Herein, we report the first preclinical evaluation of the next-generation ALK TKI, ceritinib (LDK378), in the setting of crizotinib resistance. An interrogation of in vitro and in vivo models of acquired resistance to crizotinib, including cell lines established from biopsies of patients with crizotinib-resistant NSCLC, revealed that ceritinib potently overcomes crizotinib-resistant mutations. In particular, ceritinib effectively inhibits ALK harboring L1196M, G1269A, I1171T, and S1206Y mutations, and a cocrystal structure of ceritinib bound to ALK provides structural bases for this increased potency. However, we observed that ceritinib did not overcome two crizotinib-resistant ALK mutations, G1202R and F1174C, and one of these mutations was identified in 5 of 11 biopsies from patients with acquired resistance to ceritinib. Altogether, our results demonstrate that ceritinib can overcome crizotinib resistance, consistent with clinical data showing marked efficacy of ceritinib in patients with crizotinib-resistant disease.
Significance: The second-generation ALK inhibitor ceritinib can overcome several crizotinib-resistant mutations and is potent against several in vitro and in vivo laboratory models of acquired resistance to crizotinib. These findings provide the molecular basis for the marked clinical activity of ceritinib in patients with ALK-positive NSCLC with crizotinib-resistant disease. Cancer Discov; 4(6); 662–73. ©2014 AACR.
See related commentary by Ramalingam and Khuri, p. 634
This article is highlighted in the In This Issue feature, p. 621
Autophagy, a multistep lysosomal degradation pathway that supports nutrient recycling and metabolic adaptation, has been implicated as a process that regulates cancer. Although autophagy induction may limit the development of tumors, evidence in mouse models demonstrates that autophagy inhibition can limit the growth of established tumors and improve response to cancer therapeutics. Certain cancer genotypes may be especially prone to autophagy inhibition. Different strategies for autophagy modulation may be needed depending on the cancer context. Here, we review new advances in the molecular control of autophagy, the role of selective autophagy in cancer, and the role of autophagy within the tumor microenvironment and tumor immunity. We also highlight clinical efforts to repurpose lysosomal inhibitors, such as hydroxychloroquine, as anticancer agents that block autophagy, as well as the development of more potent and specific autophagy inhibitors for cancer treatment, and review future directions for autophagy research.
Autophagy plays a complex role in cancer, but autophagy inhibition may be an effective therapeutic strategy in advanced cancer. A deeper understanding of autophagy within the tumor microenvironment has enabled the development of novel inhibitors and clinical trial strategies. Challenges and opportunities remain to identify patients most likely to benefit from this approach.
N-RAS is one member of a family of oncoproteins that are commonly mutated in cancer. Activating mutations in NRAS occur in a subset of colorectal cancers, but little is known about how the mutant protein contributes to the onset and progression of the disease. Using genetically engineered mice, we find that mutant N-RAS strongly promotes tumorigenesis in the context of inflammation. The protumorigenic nature of mutant N-RAS is related to its antiapoptotic function, which is mediated by activation of a noncanonical mitogen-activated protein kinase pathway that signals through STAT3. As a result, inhibition of MAP–ERK kinase selectively induces apoptosis in autochthonous colonic tumors expressing mutant N-RAS. The translational significance of this finding is highlighted by our observation that NRAS mutation correlates with a less favorable clinical outcome for patients with colorectal cancer. These data show for the first time the important role that N-RAS plays in colorectal cancer.
Significance: Little is known about N-RAS function in normal biology or in cancer. Our study links the antiapoptotic function of mutant N-RAS to its ability to promote colorectal cancer in an inflammatory context. In addition, our study pinpoints a therapeutic strategy for this distinct colorectal cancer subtype. Cancer Discov; 3(3); 294–307. ©2013 AACR.
This article is highlighted in the In This Issue feature, p. 239
Biochemical properties of Ras oncoproteins and their transforming ability strongly support a dominant mechanism of action in tumorigenesis. However, genetic studies unexpectedly suggested that wild-type (WT) Ras exerts tumor suppressor activity. Expressing oncogenic NrasG12D in the hematopoietic compartment of mice induces an aggressive myeloproliferative neoplasm that is exacerbated in homozygous mutant animals. Here, we show that increased NrasG12D gene dosage, but not inactivation of WT Nras, underlies the aggressive in vivo behavior of NrasG12D/G12D hematopoietic cells. Modulating NrasG12D dosage had discrete effects on myeloid progenitor growth, signal transduction, and sensitivity to MAP-ERK kinase (MEK) inhibition. Furthermore, enforced WT N-Ras expression neither suppressed the growth of Nras-mutant cells nor inhibited myeloid transformation by exogenous NrasG12D. Importantly, NRAS expression increased in human cancer cell lines with NRAS mutations. These data have therapeutic implications and support reconsidering the proposed tumor suppressor activity of WT Ras in other cancers.
Significance: Understanding the mechanisms of Ras-induced transformation and adaptive cellular responses is fundamental. The observation that oncogenic Nras lacks tumor suppressor activity, whereas increased dosage strongly modulates cell growth and alters sensitivity to MEK inhibition, suggests new therapeutic opportunities in cancer. Cancer Discov; 3(9); 993–1001. ©2013 AACR.
This article is highlighted in the In This Issue feature, p. 953
The molecular underpinnings that drive the heterogeneity of KRAS-mutant lung adenocarcinoma are poorly characterized. We performed an integrative analysis of genomic, transcriptomic, and proteomic data from early-stage and chemorefractory lung adenocarcinoma and identified three robust subsets of KRAS-mutant lung adenocarcinoma dominated, respectively, by co-occurring genetic events in STK11/LKB1 (the KL subgroup), TP53 (KP), and CDKN2A/B inactivation coupled with low expression of the NKX2-1 (TTF1) transcription factor (KC). We further revealed biologically and therapeutically relevant differences between the subgroups. KC tumors frequently exhibited mucinous histology and suppressed mTORC1 signaling. KL tumors had high rates of KEAP1 mutational inactivation and expressed lower levels of immune markers, including PD-L1. KP tumors demonstrated higher levels of somatic mutations, inflammatory markers, immune checkpoint effector molecules, and improved relapse-free survival. Differences in drug sensitivity patterns were also observed; notably, KL cells showed increased vulnerability to HSP90-inhibitor therapy. This work provides evidence that co-occurring genomic alterations identify subgroups of KRAS-mutant lung adenocarcinoma with distinct biology and therapeutic vulnerabilities.
Significance: Co-occurring genetic alterations in STK11/LKB1, TP53, and CDKN2A/B—the latter coupled with low TTF1 expression—define three major subgroups of KRAS-mutant lung adenocarcinoma with distinct biology, patterns of immune-system engagement, and therapeutic vulnerabilities. Cancer Discov; 5(8); 860–77. ©2015 AACR.
This article is highlighted in the In This Issue feature, p. 783
The incidence of esophagogastric cancer is rapidly rising, but only a minority of patients derive durable benefit from current therapies. Chemotherapy as well as anti-HER2 and PD-1 antibodies are standard treatments. To identify predictive biomarkers of drug sensitivity and mechanisms of resistance, we implemented prospective tumor sequencing of patients with metastatic esophagogastric cancer. There was no association between homologous recombination deficiency defects and response to platinum-based chemotherapy. Patients with microsatellite instability–high tumors were intrinsically resistant to chemotherapy but more likely to achieve durable responses to immunotherapy. The single Epstein–Barr virus–positive patient achieved a durable, complete response to immunotherapy. The level of ERBB2 amplification as determined by sequencing was predictive of trastuzumab benefit. Selection for a tumor subclone lacking ERBB2 amplification, deletion of ERBB2 exon 16, and comutations in the receptor tyrosine kinase, RAS, and PI3K pathways were associated with intrinsic and/or acquired trastuzumab resistance. Prospective genomic profiling can identify patients most likely to derive durable benefit to immunotherapy and trastuzumab and guide strategies to overcome drug resistance.
Significance: Clinical application of multiplex sequencing can identify biomarkers of treatment response to contemporary systemic therapies in metastatic esophagogastric cancer. This large prospective analysis sheds light on the biological complexity and the dynamic nature of therapeutic resistance in metastatic esophagogastric cancers. Cancer Discov; 8(1); 49–58. ©2017 AACR.
See related commentary by Sundar and Tan, p. 14.
See related article by Pectasides et al., p. 37.
This article is highlighted in the In This Issue feature, p. 1
Cổng thông tin cBio Genomics về ung thư (http://cbioportal.org) là một nguồn tài nguyên truy cập mở để khám phá tương tác các bộ dữ liệu genomics ung thư đa chiều, hiện đang cung cấp truy cập tới dữ liệu từ hơn 5.000 mẫu khối u thuộc 20 nghiên cứu về ung thư. Cổng thông tin cBio Genomics về ung thư giảm đáng kể rào cản giữa dữ liệu genomics phức tạp và các nhà nghiên cứu ung thư, những người muốn tiếp cận nhanh chóng, trực quan và chất lượng cao với các hồ sơ phân tử và thuộc tính lâm sàng từ các dự án genomics ung thư quy mô lớn và giúp các nhà nghiên cứu chuyển đổi các bộ dữ liệu phong phú này thành các hiểu biết sinh học và ứng dụng lâm sàng. Cancer Discov; 2(5); 401–4. ©2012 AACR.
Recently identified isocitrate dehydrogenase (IDH) mutations lead to the production of 2-hydroxyglutarate (2HG), an oncometabolite aberrantly elevated in selected cancers. We developed a facile and inexpensive fluorimetric microplate assay for the quantitation of 2HG and performed an unbiased small-molecule screen in live cells to identify compounds capable of perturbing 2HG production. Zaprinast, a phosphodiesterase 5 inhibitor, was identified as an efficacious modulator of 2HG production and confirmed to lower 2HG levels in vivo. The mechanism of action was not due to cGMP stabilization, but rather, profiling of metabolites upstream of mutant IDH1 pointed to targeted inhibition of the enzyme glutaminase (GLS). Zaprinast treatment reversed histone hypermethylation and soft-agar growth of IDH1-mutant cells, and treatment of glutamine-addicted pancreatic cancer cells reduced growth and sensitized cells to oxidative damage. Thus, Zaprinast is efficacious against glutamine metabolism and further establishes the therapeutic linkages between GLS and 2HG-mediated oncogenesis.
Significance: Gain-of-function IDH mutations are common events in glioma, acute myelogenous leukemia, and other cancer types, which lead to the accumulation of the oncometabolite 2HG. We show that the drug Zaprinast is capable of reducing cellular 2HG levels by inhibiting the upstream enzyme GLS, thus identifying a new strategy to target 2HG production in selected IDH-mutant cancers. Cancer Discov; 4(7); 828–39. ©2014 AACR.
This article is highlighted in the In This Issue feature, p. 745
- 1
- 2
- 3
- 4
- 5
- 6
- 10