BMC Microbiology
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
The role of MglA for adaptation to oxidative stress of Francisella tularensis LVS
BMC Microbiology - Tập 12 - Trang 1-11 - 2012
The Francisella tularensis protein MglA performs complex regulatory functions since it influences the expression of more than 100 genes and proteins in F. tularensis. Besides regulating the igl operon, it has been suggested that it also regulates several factors such as SspA, Hfq, CspC, and UspA, all important to stress adaptation. Therefore, it can be hypothesized that MglA plays an important role for Francisella stress responses in general and for the oxidative stress response specifically. We investigated the oxidative stress response of the ΔmglA mutant of the live vaccine strain (LVS) of F. tularensis and found that it showed markedly diminished growth and contained more oxidized proteins than the parental LVS strain when grown in an aerobic milieu but not when grown microaerobically. Moreover, the ΔmglA mutant exhibited an increased catalase activity and reduced expression of the fsl operon and feoB in the aerobic milieu. The mutant was also found to be less susceptible to H2O2. The aberrant catalase activity and gene expression was partially normalized when the ΔmglA mutant was grown in a microaerobic milieu. Altogether the results show that the ΔmglA mutant exhibits all the hallmarks of a bacterium subjected to oxidative stress under aerobic conditions, indicating that MglA is required for normal adaptation of F. tularensis to oxidative stress and oxygen-rich environments.
The temporal and spatial endophytic fungal community of Huperzia serrata: diversity and relevance to huperzine A production by the host
BMC Microbiology - Tập 22 - Trang 1-13 - 2022
Plants maintain the steady-state balance of the mutually beneficial symbiosis relationship with their endophytic fungi through secondary metabolites. Meanwhile endophytic fungi can serve as biological inducers to promote the biosynthesis and accumulation of valuable secondary metabolites in host plants through a variety of ways. The composition and structure of endophytic fungal community are affected by many factors, including tissues, seasons and so on. In this work, we studied the community diversity, temporal and spatial pattern of endophytic fungi detected from the roots, stems and leaves of Huperzia serrata in different seasons. The correlation between endophytic fungi and huperzine A (HupA) content in plants was analyzed. A total of 7005 operational taxonomic units were detected, and all strains were identified as 14 phyla, 54 classes, 140 orders, 351 families and 742 genera. Alpha diversity analysis showed that the diversity of endophytic fungi in stem and leaf was higher than that in root, and the diversity in summer (August) was lower than that in other months. NMDS analysis showed that the endophytic fungal communities of leaves, stems and roots were significantly different, and the root and leaf communities were also different between four seasons. Through correlation analysis, it was found that 33 genera of the endophytic fungi of H. serrata showed a significant positive correlation with the content of HupA (p < 0.05), of which 13 genera (Strelitziana, Devriesia, Articulospora, Derxomyces, Cyphellophora, Trechispora, Kurtzmanomyces, Capnobotryella, Erythrobasidium, Camptophora, Stagonospora, Lachnum, Golubevia) showed a highly significant positive correlation with the content of HupA (p < 0.01). These endophytic fungi may have the potential to promote the biosynthesis and accumulation of HupA in plant. This report is the first time to analyze the diversity of endophytic fungi in tissues of H. serrata in different seasons, which proves that there is variability in different tissues and seasonal distribution patterns. These findings provide references to the study of endophytic fungi of H. serrata.
Regulation of bacteria population behaviors by AI-2 “consumer cells” and “supplier cells”
BMC Microbiology - Tập 17 - Trang 1-9 - 2017
Autoinducer-2 (AI-2) is a universal signal molecule and enables an individual bacteria to communicate with each other and ultimately control behaviors of the population. Harnessing the character of AI-2, two kinds of AI-2 “controller cells” (“consumer cells” and “supplier cells”) were designed to “reprogram” the behaviors of entire population. For the consumer cells, genes associated with the uptake and processing of AI-2, which includes LsrACDB, LsrFG, LsrK, were overexpressed in varying combinations. Four consumer cell strains were constructed: Escherichia coli MG1655 pLsrACDB (NK-C1), MG1655 pLsrACDBK (NK-C2), MG1655 pLsrACDBFG (NK-C3) and MG1655 pLsrACDBFGK (NK-C4). The key enzymes responsible for production of AI-2, LuxS and Mtn, were also overexpressed, yielding strains MG1655 pLuxS (NK-SU1), and MG1655 pLuxS-Mtn (NK-SU2). All the consumer cells could decrease the environmental AI-2 concentration. NK-C2 and NK-C4 were most effective in AI-2 uptake and inhibited biofilm formation. While suppliers can increase the environmental AI-2 concentration and NK-SU2 was most effective in supplying AI-2 and facilitated biofilm formation. Further, reporter strain, MG1655 pLGFP was constructed. The expression of green fluorescent protein (GFP) in reporter cells was initiated and guided by AI-2. Mixture of consumer cells and reporter cells suggest that consumer cells can decrease the AI-2 concentration. And the supplier cells were co-cultured with reporter cells, indicating that supplier cells can provide more AI-2 compared to the control. The consumer cells and supplier cells could be used to regulate environmental AI-2 concentration and the biofilm formation. They can also modulate the AI-2 concentration when they were co-cultured with reporter cells. It can be envisioned that this system will become useful tools in synthetic biology and researching new antimicrobials.
A large scale comparative genomic analysis reveals insertion sites for newly acquired genomic islands in bacterial genomes
BMC Microbiology - Tập 11 - Trang 1-7 - 2011
Bacterial virulence enhancement and drug resistance are major threats to public health worldwide. Interestingly, newly acquired genomic islands (GIs) from horizontal transfer between different bacteria strains were found in Vibrio cholerae, Streptococcus suis, and Mycobacterium tuberculosis, which caused outbreak of epidemic diseases in recently years. Using a large-scale comparative genomic analysis of 1088 complete genomes from all available bacteria (1009) and Archaea (79), we found that newly acquired GIs are often anchored around switch sites of GC-skew (sGCS). After calculating correlations between relative genomic distances of genomic islands to sGCSs and the evolutionary distances of the genomic islands themselves, we found that newly acquired genomic islands are closer to sGCSs than the old ones, indicating that regions around sGCSs are hotspots for genomic island insertion. Based on our results, we believe that genomic regions near sGCSs are hotspots for horizontal transfer of genomic islands, which may significantly affect key properties of epidemic disease-causing pathogens, such as virulence and adaption to new environments.
Ecology impacts the decrease of Spirochaetes and Prevotella in the fecal gut microbiota of urban humansAbstract Compared to the huge microbial diversity in most mammals, human gut microbiomes have lost diversity while becoming specialized for animal-based diets – especially compared to chimps, their genetically closest ancestors. The lowered microbial diversity within the gut of westernized populations has also been associated with different kinds of chronic inflammatory diseases in humans. To further deepen our knowledge on phylogenetic and ecologic impacts on human health and fitness, we established the herein presented biobank as well as its comprehensive microbiota analysis. In total, 368 stool samples from 38 different animal species, including Homo sapiens , belonging to four diverse mammalian orders were collected at seven different locations and analyzed by 16S rRNA gene amplicon sequencing. Comprehensive data analysis was performed to (i) determine the overall impact of host phylogeny vs. diet, location, and ecology and to (ii) examine the general pattern of fecal bacterial diversity across captive mammals and humans. By using a controlled study design with captive mammals we could verify that host phylogeny is the most dominant driver of mammalian gut microbiota composition. However, the effect of ecology appears to be able to overcome host phylogeny and should therefore be studied in more detail in future studies. Most importantly, our study could observe a remarkable decrease of Spirochaetes and Prevotella in westernized humans and platyrrhines, which is probably not only due to diet, but also to the social behavior and structure in these communities. Our study highlights the importance of phylogenetic relationship and ecology within the evolution of mammalian fecal microbiota composition. Particularly, the observed decrease of Spirochaetes and Prevotella in westernized communities might be associated to lifestyle dependent rapid evolutionary changes, potentially involved in the establishment of dysbiotic microbiomes, which promote the etiology of chronic diseases.
BMC Microbiology -
Oral microbiome homogeneity across diverse human groups from southern Africa: first results from southwestern Angola and ZimbabweAbstract
Background
While the human oral microbiome is known to play an important role in systemic health, its average composition and diversity patterns are still poorly understood. To gain better insights into the general composition of the microbiome on a global scale, the characterization of microbiomes from a broad range of populations, including non-industrialized societies, is needed. Here, we used the portion of non-human reads obtained through an expanded exome capture sequencing approach to characterize the saliva microbiomes of 52 individuals from eight ethnolinguistically diverse southern African populations from Angola (Kuvale, Kwepe, Himba, Tjimba, Kwisi, Twa, !Xun) and Zimbabwe (Tshwa), including foragers, food-producers, and peripatetic groups (low-status communities who provide services to their dominant neighbors).
Results
Our results indicate that neither host genetics nor livelihood seem to influence the oral microbiome profile, with Neisseria , Streptococcus , Prevotella , Rothia , and Porphyromonas being the five most frequent genera in southern African groups, in line with what has been shown for other human populations. However, we found that some Tshwa and Twa individuals display an enrichment of pathogenic genera from the Enterobacteriaceae family (i.e. Enterobacter , Citrobacter , Salmonella ) of the Proteobacteria phylum, probably reflecting deficient sanitation and poor health conditions associated with social marginalization.
Conclusions
Taken together, our results suggest that socio-economic status, rather than ethnolinguistic affiliation or subsistence mode, is a key factor in shaping the salivary microbial profiles of human populations in southern Africa.
BMC Microbiology - Tập 23 Số 1
Broad-range potential of Asphodelus microcarpus leaves extract for drug development
BMC Microbiology - Tập 17 - Trang 1-9 - 2017
Many plants have been used in traditional medicine for their antibacterial, antifungal, antiprotozoal, antiviral, antidiarrhoeal, analgesic, antimalarial, antioxidant, anti-inflammatory and anticancer activities. In order to find novel antimicrobial and antiviral agents, the aim of the present study was the evaluation of the antibacterial and antibiofilm susceptibility of Asphodelus microcarpus leaves extract. Moreover, the antiviral activity and the phytochemical composition of the active extract were also determined. Antimicrobial and antibiofilm activities of leaves ethanol extract of A. microcarpus were evaluated on 13 different microbial strains. We selected three different sets of microorganisms: (i) Gram-positive bacteria, (ii) Gram-negative bacteria and (iii) yeasts. The potential antiviral activity of A. microcarpus leaves ethanol extract was evaluated with a luciferase reporter gene assay in which the dsRNA-dependent RIG-I-mediated IFN-β activation was inducted or inhibited by the Ebola virus VP35 protein. HPLC-DAD-MS was used to identify phenolic profile of the active extract.
A. microcarpus leaves extract showed a potent inhibitory activity on Gram-positive bacteria while only a reduced inhibition was observed on Gram-negative bacteria. No activity was detected against Yeasts. The extract also showed an interesting antibiofilm motif on various bacterial strains (E. coli, S. aureus, S. haemolyticus and B. clausii). Moreover, this extract significantly affected the Ebola virus VP35 inhibition of the viral RNA (vRNA) induced IFN response. The overall results provide supportive data on the use of A. microcarpus as antimicrobial agent and a potential source of anti-viral natural products. Data collected set the bases for further studies for the identification of single active components and the development of new pharmaceuticals.
Flavaspidic acid BB combined with mupirocin improves its anti-bacterial and anti-biofilm activities against Staphylococcus epidermidis
BMC Microbiology - Tập 22 - Trang 1-13 - 2022
The increase in drug-resistant opportunistic pathogenic bacteria, especially of antibiotic-resistant Staphylococcus epidermidis (S. epidermidis), has led to difficulties in the treatment of skin and soft tissue infections (SSTI). The major reason for bacterial resistance is the formation of bacterial biofilm. Here, we report a promising combination therapy of flavaspidic acid BB (BB) and mupirocin, which can effectively eradicate the biofilm of S. epidermidis and eliminate its drug resistance. The susceptibility test showed that the combination of BB and mupirocin has good antibacterial and antibiofilm activities, and the fractional inhibitory concentration index (FICI) of BB combined with mupirocin was 0.51 ± 0.00 ~ 0.75 ± 0.05, showing synergistic effect. Moreover, the time-kill curve assay results indicated that the combination of drugs can effectively inhibit the planktonic S. epidermidis. After drugs treatment, the drug-combination showed significantly inhibitory effects on the metabolic activity and total biomass in each stage of biofilm formation. The synergistic effect is likely related to the adhesion between bacteria, which is confirmed by field emission scanning electron microscope. And the expression level of aap, sarA and agrA genes were detected by real-time quantitative PCR (qRT-PCR). Our study provides the experimental data for the use of BB for the clinical treatment of skin infections and further demonstrate the potential of BB as a novel biofilm inhibitor.
Morphology and molecular phylogeny of a marine interstitial tetraflagellate with putative endosymbionts: Auranticordis quadriverberis n. gen. et sp. (Cercozoa)
BMC Microbiology - Tập 8 Số 1 - Trang 1-16 - 2008
Comparative morphological studies and environmental sequencing surveys indicate that marine benthic environments contain a diverse assortment of microorganisms that are just beginning to be explored and characterized. The most conspicuous predatory flagellates in these habitats range from about 20–150 μm in size and fall into three major groups of eukaryotes that are very distantly related to one another: dinoflagellates, euglenids and cercozoans. The Cercozoa is a diverse group of amoeboflagellates that cluster together in molecular phylogenies inferred mainly from ribosomal gene sequences. These molecular phylogenetic studies have demonstrated that several enigmatic taxa, previously treated as Eukaryota insertae sedis, fall within the Cercozoa, and suggest that the actual diversity of this group is largely unknown. Improved knowledge of cercozoan diversity is expected to help resolve major branches in the tree of eukaryotes and demonstrate important cellular innovations for understanding eukaryote evolution. A rare tetraflagellate, Auranticordis quadriverberis n. gen. et sp., was isolated from marine sand samples. Uncultured cells were in low abundance and were individually prepared for electron microscopy and DNA sequencing. These flagellates possessed several novel features, such as (1) gliding motility associated with four bundled recurrent flagella, (2) heart-shaped cells about 35–75 μm in diam., and (3) bright orange coloration caused by linear arrays of muciferous bodies. Each cell also possessed about 2–30 pale orange bodies (usually 4–5 μm in diam.) that were enveloped by two membranes and sac-like vesicles. The innermost membrane invaginated to form unstacked thylakoids that extended towards a central pyrenoid containing tailed viral particles. Although to our knowledge, these bodies have never been described in any other eukaryote, the ultrastructure was most consistent with photosynthetic endosymbionts of cyanobacterial origin. This combination of morphological features did not allow us to assign A. quadriverberis to any known eukaryotic supergroup. Thus, we sequenced the small subunit rDNA sequence from two different isolates and demonstrated that this lineage evolved from within the Cercozoa. Our discovery and characterization of A. quadriverberis underscores how poorly we understand the diversity of cercozoans and, potentially, represents one of the few independent cases of primary endosymbiosis within the Cercozoa and beyond.
PCR-based rapid genotyping of Stenotrophomonas maltophiliaisolates
BMC Microbiology - Tập 8 - Trang 1-9 - 2008
All bacterial genomes contain repetitive sequences which are members of specific DNA families. Such repeats may occur as single units, or found clustered in multiple copies in a head-to-tail configuration at specific loci. The number of clustered units per locus is a strain-defining parameter. Assessing the length variability of clusters of repeats is a versatile typing methodology known as multilocus variable number of tandem repeat analysis (MLVA). Stenotrophomonas maltophilia is an environmental bacterium increasingly involved in nosocomial infections and resistant to most antibiotics. The availability of the whole DNA sequence of the S. maltophilia strain K279a allowed us to set up fast and accurate PCR-based diagnostic protocols based on the measurement of length variations of loci carrying a variable number of short palindromic repeats marking the S. maltophilia genome. On the basis of the amplimers size, it was possible to deduce the number of repeats present at 12 different loci in a collection of S. maltophilia isolates, and therefore label each of them with a digit. PCR-negative regions were labelled 0. Co-amplification of two pairs of loci provided a 4-digit code sufficient for immediate subtyping. By increasing the number of loci analyzed, it should be possible to assign a more specific digit profile to isolates. In general, MLVA data match genotyping data obtained by PFGE (pulsed-field gel electrophoresis). However, some isolates exhibiting the same PCR profiles at all loci display distinct PFGE patterns. The utilization of the present protocol allows to type several S. maltophilia isolates in hours. The results are immediately interpretable without the need for sophisticated softwares. The data can be easily reproducible, and compared among different laboratories.
Tổng số: 3,667
- 1
- 2
- 3
- 4
- 5
- 6
- 10