BMC Medical Genomics

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
iOPTICS-GSO for identifying protein complexes from dynamic PPI networks
BMC Medical Genomics - Tập 10 Số 5 - Trang 55-66 - 2017
Lei, Xiujuan, Li, Huan, Zhang, Aidong, Wu, Fang-Xiang
Identifying protein complexes plays an important role for understanding cellular organization and functional mechanisms. As plenty of evidences have indicated that dense sub-networks in dynamic protein-protein interaction network (DPIN) usually correspond to protein complexes, identifying protein complexes is formulated as density-based clustering. In this paper, a new approach named iOPTICS-GSO is developed, which is the improved Ordering Points to Identify the Clustering Structure (OPTICS) algorithm with Glowworm swarm optimization algorithm (GSO) to optimize the parameters in OPTICS when finding dense sub-networks. In our iOPTICS-GSO, the concept of core node is redefined and the Euclidean distance in OPTICS is replaced with the improved similarity between the nodes in the PPI network according to their interaction strength, and dense sub-networks are considered as protein complexes. The experiment results have shown that our iOPTICS-GSO outperforms of algorithms such as DBSCAN, CFinder, MCODE, CMC, COACH, ClusterOne MCL and OPTICS_PSO in terms of f-measure and p-value on four DPINs, which are from the DIP, Krogan, MIPS and Gavin datasets. In addition, our predicted protein complexes have a small p-value and thus are highly likely to be true protein complexes. The proposed iOPTICS-GSO gains optimal clustering results by adopting GSO algorithm to optimize the parameters in OPTICS, and the result on four datasets shows superior performance. What’s more, the results provided clues for biologists to verify and find new protein complexes.
Genetic and epigenetic associations of ANRIL with coronary artery disease and risk factors
BMC Medical Genomics - Tập 14 - Trang 1-12 - 2021
Bayi Xu, Zhixia Xu, Yequn Chen, Nan Lu, Zhouwu Shu, Xuerui Tan
Both DNA genotype and methylation of antisense non-coding RNA in the INK4 locus (ANRIL) have been robustly associated with coronary artery disease (CAD), but the interdependent mechanisms of genotype and methylation remain unclear. Eighteen tag single nucleotide polymorphisms (SNPs) of ANRIL were genotyped in a matched case–control study (cases 503 and controls 503). DNA methylation of ANRIL and the INK4/ARF locus (p14ARF, p15INK4b and p16INK4a) was measured using pyrosequencing in the same set of samples (cases 100 and controls 100). Polymorphisms of ANRIL (rs1004638, rs1333048 and rs1333050) were significantly associated with CAD (p < 0.05). The incidence of CAD, multi-vessel disease, and modified Gensini scores demonstrated a strong, direct association with ANRIL gene dosage (p < 0.05). There was no significant association between ANRIL polymorphisms and myocardial infarction/acute coronary syndrome (MI/ACS) (p > 0.05). Methylation levels of ANRIL were similar between the two studied groups (p > 0.05), but were different in the rs1004638 genotype, with AA and AT genotype having a higher level of ANRIL methylation (pos4, p = 0.006; pos8, p = 0.019). Further Spearman analyses indicated that methylation levels of ANRIL were positively associated with systolic blood pressure (pos6, r = 0.248, p = 0.013), diastolic blood pressure (pos3, r = 0.213, p = 0.034; pos6, r = 0.220, p = 0.028), and triglyceride (pos4, r = 0.253, p = 0.013), and negatively associated with high-density lipoprotein cholesterol (pos2, r = − 0.243, p = 0.017). Additionally, we identified 12 transcription factor binding sites (TFBS) within the methylated ANRIL region, and functional annotation indicated these TFBS were associated with basal transcription. Methylation at the INK4/ARF locus was not associated with ANRIL genotype. These results indicate that ANRIL genotype (tag SNPs rs1004638, rs1333048 and rs1333050) mainly affects coronary atherosclerosis, but not MI/ACS. There may be allele-related DNA methylation and allele-related binding of transcription factors within the ANRIL promoter.
Circulating adiponectin levels, expression of adiponectin receptors, and methylation of adiponectin gene promoter in relation to Alzheimer’s disease
BMC Medical Genomics - Tập 15 - Trang 1-10 - 2022
Aiym Kaiyrlykyzy, Bauyrzhan Umbayev, Abdul-Razak Masoud, Aida Baibulatova, Andrey Tsoy, Farkhad Olzhayev, Dinara Alzhanova, Gulnaz Zholdasbekova, Kairat Davletov, Ainur Akilzhanova, Sholpan Askarova
The role of adiponectin (ADIPOQ) in Alzheimer’s disease (AD) has been documented, however, demonstrating controversial results. In this study, we investigated blood serum ADIPOQ levels, methylation of the adiponectin gene promoter, and adiponectin receptors (AdipoR1 and AdipoR2) expression in blood samples isolated from AD patients and healthy controls. We performed a case–control study including 248 subjects (98 AD patients and 150 healthy controls); ADIPOQ serum levels, AdipoR1, and AdipoR2 levels in PBMC were measured by ELISA Kits, and ADIPOQ gene methylation was analyzed using methyl-specific PCR. Serum adiponectin levels were threefold higher in the AD group compared to the controls. We have also found a positive correlation between adiponectin and MMSE scores and high-density lipoprotein cholesterol (HDL-C) in AD patients. A significant difference in the proportion of methylation of the CpG sites at − 74 nt of the ADIPOQ gene promoter was detected in AD cases, and the levels of adiponectin in blood serum were significantly higher in methylated samples in the AD group compared to controls. The amount of AdipoR1 was significantly higher among AD subjects, while the expression of AdipoR2 did not vary between AD patients and controls. These findings may contribute to a deeper understanding of the etiological factors leading to the development of dementia and may serve as a basis for the development of predictive biomarkers of AD.
Identification of DNA methylation changes associated with human gastric cancer
BMC Medical Genomics - Tập 4 - Trang 1-15 - 2011
Jung-Hoon Park, Jinah Park, Jung Kyoon Choi, Jaemyun Lyu, Min-Gyun Bae, Young-Gun Lee, Jae-Bum Bae, Dong Yoon Park, Han-Kwang Yang, Tae-You Kim, Young-Joon Kim
Epigenetic alteration of gene expression is a common event in human cancer. DNA methylation is a well-known epigenetic process, but verifying the exact nature of epigenetic changes associated with cancer remains difficult. We profiled the methylome of human gastric cancer tissue at 50-bp resolution using a methylated DNA enrichment technique (methylated CpG island recovery assay) in combination with a genome analyzer and a new normalization algorithm. We were able to gain a comprehensive view of promoters with various CpG densities, including CpG Islands (CGIs), transcript bodies, and various repeat classes. We found that gastric cancer was associated with hypermethylation of 5' CGIs and the 5'-end of coding exons as well as hypomethylation of repeat elements, such as short interspersed nuclear elements and the composite element SVA. Hypermethylation of 5' CGIs was significantly correlated with downregulation of associated genes, such as those in the HOX and histone gene families. We also discovered long-range epigenetic silencing (LRES) regions in gastric cancer tissue and identified several hypermethylated genes (MDM2, DYRK2, and LYZ) within these regions. The methylation status of CGIs and gene annotation elements in metastatic lymph nodes was intermediate between normal and cancerous tissue, indicating that methylation of specific genes is gradually increased in cancerous tissue. Our findings will provide valuable data for future analysis of CpG methylation patterns, useful markers for the diagnosis of stomach cancer, as well as a new analysis method for clinical epigenomics investigations.
A pan-cancer study of class-3 semaphorins as therapeutic targets in cancer
BMC Medical Genomics - Tập 13 - Trang 1-14 - 2020
Xiaoli Zhang, Brett Klamer, Jin Li, Soledad Fernandez, Lang Li
Initially characterized as axon guidance factors, semaphorins also have been implicated to have critical roles in multiple physiological and developmental functions, including the regulation of immune responses, angiogenesis, organ formation, and the etiology of multiple forms of cancer. Moreover, their contribution in immunity and the regulation of tumour microenvironment is becoming increasingly recognized. Here, we provide a comprehensive analysis of class-3 semaphorins, the only secreted family of genes among veterbrate semaphorins, in terms of their expression profiles and their association with patient survival. We also relate their role with immune subtypes, tumour microenvironment, and drug sensitivity using a pan-cancer study. Expression profiles of class-3 semaphorins (SEMA3s) and their association with patient survival and tumour microenvironment were studied in 31 cancer types using the TCGA pan-cancer data. The expression of SEMA3 family varies in different cancer types with striking inter- and intra- cancer heterogeneity. In general, our results show that SEMA3A, SEMA3C, and SEMA3F are primarily upregulated in cancer cells, while the rest of SEMA3s are mainly down-regulated in the tested tumours. The expression of SEMA3 family members was frequently associated with patient overall survival. However, the direction of the association varied with regards to the particular SEMA3 isoform queried and the specific cancer type tested. More specifically, SEMA3A and SEMA3E primarily associate with a poor prognosis of survival, while SEMA3G typically associates with survival advantage. The rest of SEMA3s show either survival advantage or disadvantage dependent on cancer type. In addition, all SEMA3 genes show significant association with immune infiltrate subtypes, and they also correlate with level of stromal cell infiltration and tumour cell stemness with various degrees. Finally, our study revealed that SEMA3 genes, especially SEMA3C and SEMA3F may contribute to drug induced cancer cell resistance. Our systematic analysis of class-3 semaphorin gene expression and their association with immune infiltrates, tumour microenvironment and cancer patient outcomes highlights the need to study each SEMA3 member as a separate entity within each specific cancer type. Also our study validated the identification of class-3 semaphorin signals as promising therapeutic targets in cancer although further laboratory validation still needed.
The genetic landscape of inherited retinal dystrophies in Arabs
BMC Medical Genomics - Tập 16 Số 1
Lama Jaffal, Hawraa Joumaa, Jinane Noureldine, Malak Banjak, Mariam Ibrahim, Zamzam Mrad, Ali Salami, Saïd El Shamieh
Abstract

Inherited retinal dystrophies (IRDs) are a major cause of vision loss. Altogether are highly heterogeneous genotypically and phenotypically, exhibiting substantial differences worldwide. To shed more light on these conditions, we investigated the genetic and phenotypic landscape of IRDs in the Arabs globally and per country.

We analyzed 1,621 affected individuals from 16 Arabic countries reported in 198 articles. At the phenotypic level, rod-cone dystrophy (RCD) and Usher syndrome were the most prevalent conditions among non-syndromic and syndromic IRDs. At the gene level, TULP1, ABCA4, RP1, CRB1, MYO7A, RPE65, KCNV2, and IMPG2 were the most mutated genes. Interestingly, all except CRB1 were highly prevalent because they harbored founder mutations, implying that consanguinity is a major determinant in Arab countries. Of note, ~ 93% of the investigated individuals carried homozygous mutations. The country analysis for the IRDs conditions and their associated genotypes revealed that whereas Leber Congenital Amaurosis, RCD, and USHER syndrome were widely distributed, bestrophinopathies and non-syndromic hearing loss were restricted to specific countries (till now).

This study could be a starting point for initiating suitable health policies towards IRDs in the Arab world. The high degree of homozygosity urges the need for genetic counsellors to provide personalized information and support the affected individuals.

A novel somatic BRCA2 point mutation in a metastatic pancreatic cancer patient: a case report
BMC Medical Genomics - Tập 14 - Trang 1-5 - 2021
Deqiang Wang, Ruting Guan, Qing Tao, Sisi Liu, Man Yu, Xiaoqin Li
In addition to ovarian and breast cancers, loss-of-function mutations in BRCA1 and BRCA2 genes are also linked to an increased risk of pancreatic cancer, with ~ 4 to 7% of pancreatic cancer patients harboring germline BRCA mutations. Most BRCA alterations in pancreatic cancer are frame-shifting indels, stop-gain, and splice-site mutations, but single nucleotide substitutions are rare. Recent studies demonstrated a significant progression-free survival (PFS) benefit from maintenance olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor administered to patients with germline BRCA mutations and metastatic pancreatic cancer. Here, we report a metastatic pancreatic cancer case who harbored a novel somatic BRCA2 c.6944T > C (p. I2315T) point mutation. After 6 weeks first-line chemotherapy, the patient was refractory to treatment and had a progressive disease. Due to the novel nonsynonymous BRCA2 point mutation, we decided to change the strategy by administering olaparib. The patient benefited from olaparib therapy and achieved a PFS of ~ 6.5 months. We describe a patient carrying a novel somatic BRCA2 p. I2315T point mutation, which is first reported in metastatic pancreatic cancer. This case report indicates that a gene mutation-based strategy should be considered in the clinic to provide more effective treatment.
Genetic integrity of the human Y chromosome exposed to groundwater arsenic
BMC Medical Genomics - Tập 3 - Trang 1-12 - 2010
Safdar Ali, Sher Ali
Arsenic is a known human carcinogen reported to cause chromosomal deletions and genetic anomalies in cultured cells. The vast human population inhabiting the Ganges delta in West Bengal, India and Bangladesh is exposed to critical levels of arsenic present in the groundwater. The genetic and physiological mechanism of arsenic toxicity in the human body is yet to be fully established. In addition, lack of animal models has made work on this line even more challenging. Human male blood samples were collected with their informed consent from 5 districts in West Bengal having groundwater arsenic level more than 50 μg/L. Isolation of genomic DNA and preparation of metaphase chromosomes was done using standard protocols. End point PCR was performed for established sequence tagged sites to ascertain the status of recombination events. Single nucleotide variants of candidate genes and amplicons were carried out using appropriate restriction enzymes. The copy number of DYZ1 array per haploid genome was calculated using real time PCR and its chromosomal localization was done by fluorescence in-situ hybridization (FISH). We studied effects of arsenic exposure on the human Y chromosome in males from different areas of West Bengal focusing on known recombination events (P5-P1 proximal; P5-P1 distal; gr/gr; TSPY-TSPY, b1/b3 and b2/b3), single nucleotide variants (SNVs) of a few candidate Y-linked genes (DAZ, TTY4, BPY2, GOLGA2LY) and the amplicons of AZFc region. Also, possible chromosomal reorganization of DYZ1 repeat arrays was analyzed. Barring a few microdeletions, no major changes were detected in blood DNA samples. SNV analysis showed a difference in some alleles. Similarly, DYZ1 arrays signals detected by FISH were found to be affected in some males. Our Y chromosome analysis suggests that the same is protected from the effects of arsenic by some unknown mechanisms maintaining its structural and functional integrities. Thus, arsenic effects on the human body seem to be different compared to that on the cultured cells.
Causal associations between liver traits and Colorectal cancer: a Mendelian randomization study
BMC Medical Genomics - Tập 16 - Trang 1-9 - 2023
Ying Ni, Wenkai Wang, Yongming Liu, Yun Jiang
This study aimed to investigate the causal associations between several liver traits (liver iron content, percent liver fat, alanine transaminase levels, and liver volume) and colorectal cancer (CRC) risk using a Mendelian randomization (MR) approach to improve our understanding of the disease and its management. Genetic variants were used as instrumental variables, extracted from genome-wide association studies (GWAS) datasets of liver traits and CRC. The Two-Sample MR package in R was used to conduct inverse variance weighted (IVW), MR Egger, Maximum likelihood, Weighted median, and Inverse variance weighted (multiplicative random effects) MR approaches to generate overall estimates of the effect. MR analysis was conducted with Benjamini-Hochberg method-corrected P values to account for multiple testing (P < 0.013). MR-PRESSO was used to identify and remove outlier genetic variants in Mendelian randomization (MR) analysis. The MR Steiger test was used to assess the validity of the assumption that exposure causes outcomes. Leave-one-out validation, pleiotropy, and heterogeneity testing were also conducted to ensure the reliability of the results. Multivariable MR was utilized for validation of our findings using the IVW method while also adjusting for potential confounding or pleiotropy bias. The MR analysis suggested a causal effect between liver volume and a reduced risk of CRC (OR 0.60; 95% CI, 0.44–0.82; P = 0.0010) but did not provide evidence for causal effects of liver iron content, percent liver fat, or liver alanine transaminase levels. The MR-PRESSO method did not identify any outliers, and the MR Steiger test confirmed that the causal direction of the analysis results was correct in the Mendelian randomization analysis. MR results were consistent with heterogeneity and pleiotropy analyses, and leave-one-out analysis demonstrated the overall values obtained were consistent with estimates obtained when all available SNPs were included in the analysis. Multivariable MR was utilized for validation of our findings using the IVW method while also adjusting for potential confounding or pleiotropy bias. The study provides tentative evidence for a causal role of liver volume in CRC, while genetically predicted levels of liver iron content, percent liver fat, and liver alanine transaminase levels were not associated with CRC risk. The findings may inform the development of targeted therapeutic interventions for colorectal liver metastasis (CRLM) patients, and the study highlights the importance of MR as a powerful epidemiological tool for investigating causal associations between exposures and outcomes.
Worldwide population differentiation at disease-associated SNPs
BMC Medical Genomics - Tập 1 - Trang 1-10 - 2008
Sean Myles, Dan Davison, Jeffrey Barrett, Mark Stoneking, Nic Timpson
Recent genome-wide association (GWA) studies have provided compelling evidence of association between genetic variants and common complex diseases. These studies have made use of cases and controls almost exclusively from populations of European ancestry and little is known about the frequency of risk alleles in other populations. The present study addresses the transferability of disease associations across human populations by examining levels of population differentiation at disease-associated single nucleotide polymorphisms (SNPs). We genotyped ~1000 individuals from 53 populations worldwide at 25 SNPs which show robust association with 6 complex human diseases (Crohn's disease, type 1 diabetes, type 2 diabetes, rheumatoid arthritis, coronary artery disease and obesity). Allele frequency differences between populations for these SNPs were measured using Fst. The Fst values for the disease-associated SNPs were compared to Fst values from 2750 random SNPs typed in the same set of individuals. On average, disease SNPs are not significantly more differentiated between populations than random SNPs in the genome. Risk allele frequencies, however, do show substantial variation across human populations and may contribute to differences in disease prevalence between populations. We demonstrate that, in some cases, risk allele frequency differences are unusually high compared to random SNPs and may be due to the action of local (i.e. geographically-restricted) positive natural selection. Moreover, some risk alleles were absent or fixed in a population, which implies that risk alleles identified in one population do not necessarily account for disease prevalence in all human populations. Although differences in risk allele frequencies between human populations are not unusually large and are thus likely not due to positive local selection, there is substantial variation in risk allele frequencies between populations which may account for differences in disease prevalence between human populations.
Tổng số: 1,564   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10