BMC Genetics

Công bố khoa học tiêu biểu

Sắp xếp:  
Interpopulation hybridization results in widespread viability selection across the genome in Tigriopus californicus
BMC Genetics - Tập 12 - Trang 1-13 - 2011
Victoria L Pritchard, Leilani Dimond, J Scott Harrison, Claudia Cristina S Velázquez, Jennifer T Zieba, Ronald S Burton, Suzanne Edmands
Genetic interactions within hybrids influence their overall fitness. Understanding the details of these interactions can improve our understanding of speciation. One experimental approach is to investigate deviations from Mendelian expectations (segregation distortion) in the inheritance of mapped genetic markers. In this study, we used the copepod Tigriopus californicus, a species which exhibits high genetic divergence between populations and a general pattern of reduced fitness in F2 interpopulation hybrids. Previous studies have implicated both nuclear-cytoplasmic and nuclear-nuclear interactions in causing this fitness reduction. We identified and mapped population-diagnostic single nucleotide polymorphisms (SNPs) and used these to examine segregation distortion across the genome within F2 hybrids. We generated a linkage map which included 45 newly elucidated SNPs and 8 population-diagnostic microsatellites used in previous studies. The map, the first available for the Copepoda, was estimated to cover 75% of the genome and included markers on all 12 T. californicus chromosomes. We observed little segregation distortion in newly hatched F2 hybrid larvae (fewer than 10% of markers at p < 0.05), but strikingly higher distortion in F2 hybrid adult males (45% of markers at p < 0.05). Hence, segregation distortion was primarily caused by selection against particular genetic combinations which acted between hatching and maturity. Distorted markers were not distributed randomly across the genome but clustered on particular chromosomes. In contrast to other studies in this species we found little evidence for cytonuclear coadaptation. Instead, different linkage groups exhibited markedly different patterns of distortion, which appear to have been influenced by nuclear-nuclear epistatic interactions and may also reflect genetic load carried within the parental lines. Adult male F2 hybrids between two populations of T. californius exhibit dramatic segregation distortion across the genome. Distorted loci are clustered within specific linkage groups, and the direction of distortion differs between chromosomes. This segregation distortion is due to selection acting between hatching and adulthood.
A new family-based association test via a least-squares method
BMC Genetics - Tập 6 - Trang 1-4 - 2005
Song Yang, Jungnam Joo, Ziding Feng, Jing-Ping Lin
To test the association between a dichotomous phenotype and genetic marker based on family data, we propose a least-squares method using the vector of phenotypes and their cross products within each family. This new approach allows covariate adjustment and is numerically much simpler to implement compared to likelihood- based methods. The new approach is asymptotically equivalent to the generalized estimating equation approach with a diagonal working covariance matrix, thus avoiding some difficulties with the working covariance matrix reported previously in the literature. When applied to the data from Collaborative Study on the Genetics of Alcoholism, this new method shows a significant association between the marker rs1037475 and alcoholism.
Fine mapping of a QTL affecting levels of skatole on pig chromosome 7
BMC Genetics - Tập 18 - Trang 1-9 - 2017
Maren van Son, Matthew P. Kent, Harald Grove, Rahul Agarwal, Hanne Hamland, Sigbjørn Lien, Eli Grindflek
Previous studies in the Norwegian pig breeds Landrace and Duroc have revealed a QTL for levels of skatole located in the region 74.7–80.5 Mb on SSC7. Skatole is one of the main components causing boar taint, which gives an undesirable smell and taste to the pig meat when heated. Surgical castration of boars is a common practice to reduce the risk of boar taint, however, a selection for boars genetically predisposed for low levels of taint would help eliminating the need for castration and be advantageous for both economic and welfare reasons. In order to identify the causal mutation(s) for the QTL and/or identify genetic markers for selection purposes we performed a fine mapping of the SSC7 skatole QTL region. A dense set of markers on SSC7 was obtained by whole genome re-sequencing of 24 Norwegian Landrace and 23 Duroc boars. Subsets of 126 and 157 SNPs were used for association analyses in Landrace and Duroc, respectively. Significant single markers associated with skatole spanned a large 4.4 Mb region from 75.9–80.3 Mb in Landrace, with the highest test scores found in a region between the genes NOVA1 and TGM1 (p < 0.001). The same QTL was obtained in Duroc and, although less significant, with associated SNPs spanning a 1.2 Mb region from 78.9–80.1 Mb (p < 0.01). The highest test scores in Duroc were found in genes of the granzyme family (GZMB and GZMH-like) and STXBP6. Haplotypes associated with levels of skatole were identified in Landrace but not in Duroc, and a haplotype block was found to explain 2.3% of the phenotypic variation for skatole. The SNPs in this region were not associated with levels of sex steroids. Fine mapping of a QTL for skatole on SSC7 confirmed associations of this region with skatole levels in pigs. The QTL region was narrowed down to 4.4 Mb in Landrace and haplotypes explaining 2.3% of the phenotypic variance for skatole levels were identified. Results confirmed that sex steroids are not affected by this QTL region, making these markers attractive for selection against boar taint.
LD2SNPing: linkage disequilibrium plotter and RFLP enzyme mining for tag SNPs
BMC Genetics - Tập 10 - Trang 1-9 - 2009
Hsueh-Wei Chang, Li-Yeh Chuang, Yan-Jhu Chang, Yu-Huei Cheng, Yu-Chen Hung, Hsiang-Chi Chen, Cheng-Hong Yang
Linkage disequilibrium (LD) mapping is commonly used to evaluate markers for genome-wide association studies. Most types of LD software focus strictly on LD analysis and visualization, but lack supporting services for genotyping. We developed a freeware called LD2SNPing, which provides a complete package of mining tools for genotyping and LD analysis environments. The software provides SNP ID- and gene-centric online retrievals for SNP information and tag SNP selection from dbSNP/NCBI and HapMap, respectively. Restriction fragment length polymorphism (RFLP) enzyme information for SNP genotype is available to all SNP IDs and tag SNPs. Single and multiple SNP inputs are possible in order to perform LD analysis by online retrieval from HapMap and NCBI. An LD statistics section provides D, D', r2, δ Q , ρ, and the P values of the Hardy-Weinberg Equilibrium for each SNP marker, and Chi-square and likelihood-ratio tests for the pair-wise association of two SNPs in LD calculation. Finally, 2D and 3D plots, as well as plain-text output of the results, can be selected. LD2SNPing thus provides a novel visualization environment for multiple SNP input, which facilitates SNP association studies. The software, user manual, and tutorial are freely available at http://bio.kuas.edu.tw/LD2NPing .
Interaction between allelic variations in vitamin D receptor and retinoid X receptor genes on metabolic traits
BMC Genetics - Tập 15 Số 1 - Trang 37 - 2014
Karani S. Vimaleswaran, Alana Cavadino, Diane J. Berry, Massimo Mangino, Peter C. Andrews, Jason H. Moore, Tim D. Spector, Chris Power, Marjo‐Riitta Järvelin, Elina Hyppönen
Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat
BMC Genetics - Tập 16 - Trang 1-8 - 2015
Tobias Würschum, Philipp H. G. Boeven, Simon M. Langer, C. Friedrich H. Longin, Willmar L. Leiser
Copy number variation was found to be a frequent type of DNA polymorphism in the human genome often associated with diseases but its importance in crops and the effects on agronomic traits are still largely unknown. Here, we employed a large worldwide panel of 1110 winter wheat varieties to assess the frequency and the geographic distribution of copy number variants at the Photoperiod-B1 (Ppd-B1) and the Vernalization-A1 (Vrn-A1) loci as well as their effects on flowering time under field conditions. We identified a novel four copy variant of Vrn-A1 and based on the phylogenetic relationships among the lines show that the higher copy variants at both loci are likely to have arisen independently multiple times. In addition, we found that the frequency of the different copy number variants at both loci reflects the environmental conditions in the varieties’ region of origin and based on multi-location field trials show that Ppd-B1 copy number has a substantial effect on the fine-tuning of flowering time. In conclusion, our results show the importance of copy number variation at Ppd-B1 and Vrn-A1 for the global adaptation of wheat making it a key factor for wheat success in a broad range of environments and in a wider context substantiate the significant role of copy number variation in crops.
Developing molecular tools and insights into the Penstemon genome using genomic reduction and next-generation sequencing
BMC Genetics - Tập 14 - Trang 1-34 - 2013
Rhyan B Dockter, David B Elzinga, Brad Geary, P Jeff Maughan, Leigh A Johnson, Danika Tumbleson, JanaLynn Franke, Keri Dockter, Mikel R Stevens
Penstemon’s unique phenotypic diversity, hardiness, and drought-tolerance give it great potential for the xeric landscaping industry. Molecular markers will accelerate the breeding and domestication of drought tolerant Penstemon cultivars by, creating genetic maps, and clarifying of phylogenetic relationships. Our objectives were to identify and validate interspecific molecular markers from four diverse Penstemon species in order to gain specific insights into the Penstemon genome. We used a 454 pyrosequencing and GR-RSC (genome reduction using restriction site conservation) to identify homologous loci across four Penstemon species (P. cyananthus, P. davidsonii, P. dissectus, and P. fruticosus) representing three diverse subgenera with considerable genome size variation. From these genomic data, we identified 133 unique interspecific markers containing SSRs and INDELs of which 51 produced viable PCR-based markers. These markers produced simple banding patterns in 90% of the species × marker interactions (~84% were polymorphic). Twelve of the markers were tested across 93, mostly xeric, Penstemon taxa (72 species), of which ~98% produced reproducible marker data. Additionally, we identified an average of one SNP per 2,890 bp per species and one per 97 bp between any two apparent homologous sequences from the four source species. We selected 192 homologous sequences, meeting stringent parameters, to create SNP markers. Of these, 75 demonstrated repeatable polymorphic marker functionality across the four sequence source species. Finally, sequence analysis indicated that repetitive elements were approximately 70% more prevalent in the P. cyananthus genome, the largest genome in the study, than in the smallest genome surveyed (P. dissectus). We demonstrated the utility of GR-RSC to identify homologous loci across related Penstemon taxa. Though PCR primer regions were conserved across a broadly sampled survey of Penstemon species (93 taxa), DNA sequence within these amplicons (12 SSR/INDEL markers) was highly diverse. With the continued decline in next-generation sequencing costs, it will soon be feasible to use genomic reduction techniques to simultaneously sequence thousands of homologous loci across dozens of Penstemon species. Such efforts will greatly facilitate our understanding of the phylogenetic structure within this important drought tolerant genus. In the interim, this study identified thousands of SNPs and over 50 SSRs/INDELs which should provide a foundation for future Penstemon phylogenetic studies and breeding efforts.
Genetic support for a quantitative trait nucleotide in the ABCG2 gene affecting milk composition of dairy cattle
BMC Genetics - Tập 8 Số 1 - 2007
Hanne Gro Olsen, Heidi Nilsen, Ben J. Hayes, Paul R. Berg, Morten Svendsen, Sigbjørn Lien, T.H.E. Meuwissen
Evidence for positive selection of taurine genes within a QTL region on chromosome X associated with testicular size in Australian Brahman cattle
BMC Genetics - - 2014
Russell E. Lyons, Nguyen To Loan, Leanne Dierens, Marina R. S. Fortes, Matthew Kelly, Sean McWilliam, Yutao Li, R. J. Bunch, B. E. Harrison, W. Barendse, S. A. Lehnert, Stephen S. Moore
Tổng số: 1,431   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 144