Advances in Natural Sciences: Nanoscience and Nanotechnology

SCOPUS (2010-2023)ESCI-ISI

  2043-6262

  2043-6262

  Việt Nam

Cơ quản chủ quản:  IOP Publishing Ltd.

Lĩnh vực:
Electrical and Electronic EngineeringMaterials Science (miscellaneous)Industrial and Manufacturing Engineering

Các bài báo tiêu biểu

How helpful is nanotechnology in agriculture?
- 2019
Nanotechnology has great potential, as it can enhance the quality of life through its applications in various fields like agriculture and the food system. Around the world it has become the future of any nation. But we must be very careful with any new technology to be introduced regarding its possible unforeseen related risks that may come through its positive potential. However, it is also critical for the future of a nation to produce a trained future workforce in nanotechnology. In this process, to inform the public at large about its advantages is the first step; it will result in a tremendous increase in interest and new applications in all the domains will be discovered. With this idea, the present review has been written. There is great potential in nanoscience and technology in the provision of state-of-the-art solutions for various challenges faced by agriculture and society today and in the future. Climate change, urbanization, sustainable use of natural resources and environmental issues like runoff and accumulation of pesticides and fertilizers are the hot issues for today's agriculture. This paper reviews some of the potential applications of nanotechnology in the field of agriculture and recommends many strategies for the advancement of scientific and technological knowledge currently being examined
#nano
Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method
- 2019
In this work CoFe2O4 spinel ferrite nanoparticles were synthesized by honey mediated sol-gel combustion method and further annealed at higher temperature 500 °C, 700 °C, 900 °C and 1100 °C. The synthesized spinel ferrite nanoparticles is investigated by x-ray diffraction, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), field emission scanning electron microscopy, x-ray photoelectron spectroscopy and vibrating sample magnetometer. The x-ray diffraction study reveals face-centered cubic spinel cobalt ferrite crystal phase formation. The crystallite size and lattice parameter are increased with annealing temperature. Raman and Fourier transform infrared spectra also confirm spinel ferrite crystal structure of synthesized nanoparticles. The existence of cation at octahedral and tetrahedral site in cobalt ferrite nanoparticles is confirmed by x-ray photoelectron spectroscopy. Magnetic measurement shows increased saturation magnetization 74.4 emu g−1 at higher annealing temperature 1100 °C, high coercivity 1347.3 Oe at lower annealing temperature 500 °C, and high remanent magnetization 32.3 emu g−1 at 900 °C annealing temperature. The magnetic properties of synthesized ferrite nanoparticles can be tuned by adjusting sizes through annealing temperature. Furthermore, the dielectric constant and ac conductivity shows variation with frequency (1–107 Hz), grain size and cation redistribution. The modulus spectroscopy study reveals the role of bulk grain and grain boundary towards the resistance and capacitance. The cole-cole plots in modulus formalism also well support the electrical response of nanoparticles originated from both grain and grain boundaries. The dielectric, electrical, magnetic, impedance and modulus spectroscopic characteristics of synthesized CoFe2O4 spinel ferrite nanoparticles demonstrate the applicability of these nanoparticles for magnetic recording, memory devices and for microwave applications
#nano
Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities
- 2019
In this work we aim to synthesize biocompatible ZnO nanoparticles from the zinc nitrate via green process using leaf extracts of the Costus pictus D. Don medicinal plant. FTIR studies confirm the presence of biomolecules and metal oxides. X-ray diffraction (XRD) structural analysis reveals the formation of pure hexagonal phase structures of ZnO nanoparticles. The surface morphologies of ZnO nanoparticles observed under a scanning electron microscope (SEM) suggest that most ZnO crystallites are hexagonal. EDX analysis confirms the presence of primarily zinc and oxygen. TEM images show that biosynthesized zinc oxide nanoparticles are hexagonal and spherical. The plausible formation mechanisms of zinc oxide nanoparticles are also predicted. The biosynthesized zinc oxide nanoparticles exhibit strong antimicrobial behavior against bacterial and fungal species when employing the agar diffusion method. Synthesized ZnO nanoparticles exhibit anticancer activity against Daltons lymphoma ascites (DLA) cells as well as antimicrobial activity against some bacterial and fungal strains
#nano
Promising applications of graphene and graphene-based nanostructures
- 2019
The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of molecules, vapors and gases through nanopores in graphene membranes, experimental works investigating selective transport of different molecules through nanopores in single-layer graphene and graphene-based membranes toward the water desalination, chemical mixture separation and gas control. Various applications of graphene in bio-medicine are the contents of the fourth scientific subject of the review. They include the DNA translocations through nanopores in graphene membranes toward the fabrication of devices for genomic screening, in particular DNA sequencing; subnanometre trans-electrode membranes with potential applications to the fabrication of very high resolution, high throughput nanopore-based single-molecule detectors; antibacterial activity of graphene, graphite oxide, graphene oxide and reduced graphene oxide; nanopore sensors for nucleic acid analysis; utilization of graphene multilayers as the gates for sequential release of proteins from surface; utilization of graphene-based electroresponsive scaffolds as implants for on-demand drug delivery etc. The fifth scientific subject of the review is the research on the utilization of graphene in energy storage devices: ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage; self-assembled graphene/carbon nanotube hybrid films for supercapacitors; carbon-based supercapacitors fabricated by activation of graphene; functionalized graphene sheet-sulfure nanocomposite for using as cathode material in rechargeable lithium batteries; tunable three-dimensional pillared carbon nanotube-graphene networks for high-performance capacitance; fabrications of electrochemical micro-capacitors using thin films of carbon nanotubes and chemically reduced graphenes; laser scribing of high-performance and flexible graphene-based electrochemical capacitors; emergence of next-generation safe batteries featuring graphene-supported Li metal anode with exceptionally high energy or power densities; fabrication of anodes for lithium ion batteries from crumpled graphene-encapsulated Si nanoparticles; liquid-mediated dense integration of graphene materials for compact capacitive energy storage; scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage; superior micro-supercapacitors based on graphene quantum dots; all-graphene core-sheat microfibres for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles; micro-supercapacitors with high electrochemical performance based on three-dimensional graphene-carbon nanotube carpets; macroscopic nitrogen-doped graphene hydrogels for ultrafast capacitors; manufacture of scalable ultra-thin and high power density graphene electrochemical capacitor electrodes by aqueous exfoliation and spray deposition; scalable synthesis of hierarchically structured carbon nanotube-graphene fibers for capacitive energy storage; phosphorene-graphene hybrid material as a high-capacity anode material for sodium-ion batteries. Beside above-presented promising applications of graphene and graphene-based nanostructures, other less widespread, but perhaps not less important, applications of graphene and graphene-based nanomaterials, are also briefly discussed
#nano
Surface modification and functionalization of carbon nanotube with some organic compounds
- 2019
In this work the surface modification and functionalization of carbon nanotubes (CNTs) were investigated. CNTs were firstly treated by acid mixture H2SO4/HNO3 to introduce the carboxylic group onto the surface of CNTs. This carboxylic group was used as reaction precursor in the functionalization. Two functional groups, dodecylamine (DDA) and 3-aminopropyl triethoxysilane (3-APTES), were successfully covalently attached to CNTs. The functionalized CNTs were characterized by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, differential scanning calorimetry and thermal gravimetric analysis (DSC/TGA) and transmission electron microscopy (TEM) methods. The CNTs attached to the organofunctional moieties have greater versatility for further utilization in different application fields such as biology, nanocomposites, solar energy, etc
#nano
Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method
- 2019
Graphene films were successfully synthesized by atmospheric pressure chemical vapor deposition (APCVD) method. Methane (CH4) gas and copper (Cu) tapes were used as a carbon source and a catalyst, respectively. The CVD temperature and time were in the range of 800–1000 °C and 10 s to 45 min, respectively. The role of the CVD temperature and time on the growth of graphene films was investigated in detail via scanning electron microscopy (SEM) and Raman spectroscopy techniques. The results of SEM images and Raman spectra show that the quality of the graphene films was improved with increasing of CVD temperature due to the increase of catalytic activity
#nano
Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery
- 2019
In this work anti-cancer drug curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles was modified by chitosan (CS). The magnetic iron oxide nanoparticles were synthesized by using reverse micro-emulsion (water-in-oil) method. The magnetic nanoparticles without loaded drug and drug-loaded magnetic nanoparticles were characterized by XRD, FTIR, TG-DTA, SEM, TEM, and VSM techniques. These nanoparticles have almost spherical shape and their diameter varies from 8 nm to 17 nm. Measurement of VSM at room temperature showed that iron oxide nanoparticles have superparamagnetic properties. In vitro drug loading and release behavior of curcumin drug-loaded CS-Fe3O4 nanoparticles were studied by using UV-spectrophotometer. In addition, the cytotoxicity of the modified nanoparticles has shown anticancer activity against A549 cell with IC50 value of 73.03 μg/ml. Therefore, the modified magnetic nanoparticles can be used as drug delivery carriers on target in the treatment of cancer cells
#nano
Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene
- 2019
Zinc oxide nanoparticles were prepared using corriandrum sativum leaf extract and zinc acetate dihydrate. It was utilized as a photocatalyst for the degradation of anthracene. The catalyst was characterized by x-ray diffraction, high-resolution transmission electron microscopy, scanning electron microscopy, dynamic scattering light, Raman spectrometry and UV–vis spectrophotometry. The catalyst was used in a bench-scale design for degradation of anthracene. The factors affecting the photocatalytic degradation efficiency, including irradiation time, loading catalyst doses, and initial concentration of anthracene were investigated. The results obtained showed that the photocatalytic degradation efficiency was increased with both the decrease of the initial anthracene concentration and the increase of the photocatalyst doses. The optimum photocatalytic degradation was obtained at pH 7, irradiation time of 240 min and loading catalyst dose of 1000 μg L−1. Under these conditions, the photocatalytic degradation percentage of anthracene was 96%. The byproduct was the much less toxic (9, 10-anthraquinone) and a small amount of phthalic acid as confirmed by gas mass spectrometry and high-pressure liquid chromatography. The kinetic studies revealed that the photocatalytic degradation process obeyed the Langmuir–Hinshelwood model and followed a pseudo-first-order rate expression
#nano
Phytofabrication of nanoparticles through plant as nanofactories
- 2019
In recent years, nanoscience and nanotechnology have emerged as a new area of fundamental science and are receiving global attention due to their extensive applications. Conventionally nanoparticles were manufactured by physical and chemical techniques. The recent development and implementation of new technologies have led to a new trend, the nano-revolution unfolding the role of plants in bio- and green synthesis of nanoparticles which seems to have drawn a quite unequivocal attention to the synthesis of stable nanoparticles. Although nanoparticles can be synthesized through many conventional methods, biological route of the synthesis is more competent than the physical and chemical techniques. Biologically synthesized nanoparticles have enjoyed an upsurge of applications in various sectors. Hence, the present study envisions biosynthesis of nanoparticles from plants which are emerging as nanofactories. Hence, the present review summarizes the literature reported thus far and envisions plants as emerging sources of nanofactories along with applications, the mechanism behind phytosynthesis of nanoparticles and the mechanism of antibacterial action of nanoparticles
#nano
Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract
- 2019
An eco-friendly approach for the preparation of silver nanoparticles (AgNPs) from silver nitrate solution using aqueous Eriobotrya japonicaleaf extract was investigated. The reduction of silver ions in solution was monitored using UV–visible absorption spectroscopy, and the surface plasmon resonance of AgNPs at 435 nm was observed. The proper condition to biosynthesize AgNPs using E. japonica leaf extract was optimized by UV–visible absorption spectroscopy and dynamic light scattering measurement (DLS). The biosynthesised nanoparticles were characterised using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), DLS, x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). XRD and EDX analyses confirmed the crystalline character of AgNPs and the presence of elemental silver. The prepared AgNPs were spherical in shape, and their average particle size determined by TEM was about 20 nm. Furthermore the AgNPs were found to exhibit effective antibacterial activities against Escherichia coliand Staphylococcus aureus
#nano