Estuaries

Công bố khoa học tiêu biểu

Sắp xếp:  
Seasonal control of the Saint-Lawrence maximum turbidity zone by tidal-flat sedimentation
Estuaries - Tập 9 Số 2 - Trang 84-94 - 1986
Lucotte, Marc, d’Anglejan, Bruno
The core of the turbidity maximum zone in the Saint-Lawrence Estuary is located in the North Channel and oscillates in front of the large (3×106 m2) intertidal flats and marshes of Cap Tourmente. It is shown that seasonal fluctuations in the intensity and the position of this core are mainly determined by suspended sediment exchanges between the channel and the marshes. Fine sediments, most of them found 20 km downstream in the channel off Cap Maillard in late winter and early spring, are advected upstream over the flats during the summer months by the tide. The deposition, favored by marsh plant growth, reaches 5×105 metric tons in three months. A period of intense erosion, at a mean rate of 4,500 metric tons per tide, coincides with the destruction of the plant cover by migratory geese. The material removed fills up the Chenal de l’Île d’Orléans upstream and is flushed back into the water column during the next spring freshette. This rotating seasonal sediment circulation, although very localized, exerts a major influence on the distribution and storage time of suspended particles in the upper estuary.
Effects of sediment contaminants and environmental gradients on macrobenthic community trophic structure in Gulf of Mexico estuaries
Estuaries - Tập 23 Số 3 - Trang 411-424 - 2000
Brown, Steven S., Gaston, Gary R., Rakocinski, Chet F., Heard, Richard W.
Macrobenthic communities from estuaries throughout the northern Gulf of Mexico were studied to assess the influence of sediment contaminants and natural environmental factors on macrobenthic community trophic structure. Community trophic data were also used to evaluate whether results from laboratory sediment toxicity tests were effective indicators of site-specific differences in benthic trophic structure. A multiple regression model consisting of five composite factors (principal components) was used to distinguish the effects of sediment contaminants and environmental variables on benthic community trophic structure. This model explained 33.5% of the variation in macrobenthic trophic diversity (p<0.001), a variable derived from the distribution of taxas among nine original trophic categories. A significant negative relatinship was found between principal components reflecting concentrations of sediment contaminants and macrobenthic trophic diversity. Detritivores including surface deposit-feeders (SDF), subsurface deposit-feeders (SSDF), and filter feeders (FF) were numerically dominant at 201 random sites, each group accounting for 25–30% of total macrobenthic abundance. The relative abundance of SDFs was considerably lower (12.1±2.9% to 17.1±4.4%) at sites where sediment contaminant concentrations exceeded minimum biological effects thresholds (ER-L values from Long and Morgan 1990 than at sites sampled at random (29.3±5.7%). SSDFs were proportionally more abundant at contaminated sites (42.0±7.7% to 63.6±10.3%) versus random sites (27.5±5.7%), and the relative abundance of SSDFs was positively correlated with concentrations of particular contaminants. Benthic trophic structure was also found to be a function of salinity, where the proportion of SSDFs was negatively correlated with salinity (p=0.035, r=−0.223, n=326). Silt-clay content loaded fairly strongly on the first principal component, but trophic structure parameters were not significantly correlated with sediment grain size or dissolved oxygen (perhaps due, in part, to covariation). Results from laboratory sediment toxicity tests with mysids were predictive of differences in macrobenthic trophic structure in situ (i.e., mysid survival was negatively correlated with %SSDF; p<0.001, r=−0.292, n=326). Results from laboratory sediment toxicity tests with ampeliscid amphipods were not indicative of site-specific differences in benthic trophic structure. Results from this study demonstrated that sediment contaminants can be quite important in structuring macrobenthic communities in soft-bottom estuarine habitats. The fact that macrobenthic trophic diversity decreased significantly with increasing sediment contamination indicates that important general differences in benthic community function may exist between contaminated and random sites. These data suggest that benthic trophic structure analysis may be an effective tool for assessing integrated community responses to chronic sublethal exposure and may be useful for assessing toxicological responses at ecologically relevant levels of organization.
Population maintenance of the scyphozoanCyanea sp. Settled planulae and the distribution of medusae in the Niantic River, Connecticut, USA
Estuaries - Tập 25 Số 1 - Trang 70-75 - 2002
Colin, Sean P., Kremer, Patricia
Scyphozoan jellyfish are seasonally conspicuous in coastal waters, but relatively little is known about the factors that control their distribution and population dynamics.Cyanea sp is a seasonally abundant medusa in the Niantic River, Connecticut, U.S. and appears to maintain a population entirely within the estuary. To better understand the factors controlling their occurrence, we examined the temporal and spatial distribution of settled scyphistomae in relation to that of the medusae. Planula settlement patterns mirrored the presence of mature female medusae. The planulae settled primarily near the bottom. After settlement, planulacysts and polyps on the settlement plates were out competed by large barnacle and ascidian larvae, resulting in a sharp decline in cyst and polyp abundance. This stage-specific mortality may represent a population bottleneck in the life cycle of scyphozoans.
Nitrogen limitation of phytoplankton in a shallow embayment in northern Puget Sound
Estuaries - Tập 20 Số 4 - Trang 759-769 - 1997
Bernhard, A. E., Peele, E. R.
The effect of nutrient enrichments on natural phytoplankton assemblages was examined in six experiments conducted from June to October 1992. Short-term (4 d to 7 d) nutrient enrichment bioassays were incubated in situ in Padilla Bay, a slough-fed estuary in northern Puget Sound, Washington. Ammonium additions (15 μM) significantly (p<0.001) stimulated phytoplankton biomass accumulation during all six experiments. In two experiments, nitrate additions (15 μM) significantly stimulated accumulation of phytoplankton biomass during October, but not September. Addition of phosphate (1.0 μM) or silicate (15 μM) alone did not stimulate phytoplankton biomass accumulation during any of the experiments. In most experiments, phytoplankton response was greatest in combination treatments of ammonium and phosphate. Dissolved inorganic nutrient concentrations in the containers decreased during all incubations, but showed the greatest reduction in treatments receiving nitrogen. Dissolved inorganic nitrogen (DIN) to phosphate (PO4 3−) ratios were below 16∶1 during all experiments, suggesting the potential for nitrogen limitation. In three experiments, the response of photosynthetic nanoplankton (<20 μm) to ammonium additions was compared to that of the total phytoplankton assemblages. Accumulation of nanoplankton biomass exceeded that of the total phytoplankton during two experiments in August but showed no significant response to ammonium additions in October. Results from the bioassays, the low DIN∶PO4 3− ratios, and the reduction in nutrient concentrations in the containers provide evidence for potential nitrogen limitation of phytoplankton production during summer in Padilla Bay.
Marine and estuarine shallow water science and management: The interrelationship among habitats and their management
Estuaries - Tập 22 Số 3 - Trang 731-734 - 1999
Reill, Francis J., Spagnolo, Ralph J., Ambrogio, Edward
Gas exchange in rivers and estuaries: Choosing a gas transfer velocity
Estuaries - Tập 24 Số 2 - Trang 312-317 - 2001
Raymond, Peter A., Cole, Jonathan J.
A comparison of residence time calculations using simple compartment models of the Altamaha River estuary, Georgia
Estuaries - Tập 25 Số 6 - Trang 1304-1317 - 2002
Sheldon, Joan E., Alber, Merryl
The residence and flushing times of an estuary are two different concepts that are often confused. Flushing time is the time required for the freshwater inflow to equal the amount of freshwater originally present in the estuary. It is specific to freshwater (or materials dissolved in it) and represents the transit time through the entire system (e.g., from head of tide to the mouth). Residence time is the average time particles take to escape the estuary. It can be calculated for any type of material and will vary depending on the starting location of the material. In the literature, the term residence time is often used to refer to the average freshwater transit time and is calculated as such. Freshwater transit time is a more precise term for a type of residence time (that of freshwater, starting from the head of the estuary), whereas residence time is a more general term that must be clarified by specifying the material and starting distribution. We explored these two mixing time scales in the context of the Altmaha River estuary, Georgia, and present a comparison of techniques for their calculation (fraction of freshwater models and variations of box models). Segmented tidal prism models, another common approach, have data requirements similar to other models but can be cumbersome to implement properly. Freshwater transit time estimates from simple steady-state box models were virtually, identical to flushing times for four river-flow cases, as long as boxes were scaled appropriately to river flow, and residence time estimates from different box models were also in good agreement. Mixing time estimates from box models, were incorrect when boxes were imporperly scaled. Mixing time scales vary nonlinearly with river flow, so characterizing the range as well as the mean or median is important for a thorough understanding of the potential for within-estuary processing. We are now developing an imporved box model that will allow the calculation of a variety of mixing time scales using simulations with daily variable river discharge.
Mixing behavior of dissolved organic carbon and its potential biological significance in the Pawcatuck River Estuary
Estuaries - Tập 17 Số 3 - Trang 521-536 - 1994
Doering, Peter H., Oviatt, Candace A., McKenna, James H., Reed, Laura W.
The distributions of dissolved organic carbon (DOC), phytoplankton biomass (as measured by in vivo fluorescence), total nitrogen and phosphorus, and light extinction were observed on 10 cruises during 1989 and 1990 in the Pawcatuck River estuary located in southern Rhode Island. In the lower estuary, the distance of peak phytoplankton biomass from the head of the estuary was positively correlated with river discharge while the magnitude of the peak increased with decreasing discharge. High light-extinction appeared to limit the accumulation of biomass in the upper estuary. Variability in light extinction was largely (50%) explained by variation in the concentration of DOC. Salinity versus constituent plots suggested that DOC behaved nonconservatively in the estuary. These observational data indicate that the mixing behavior of DOC in the estuary influences light extinction and thus may limit accumulation of phytoplankton biomass in the upper estuary. This interpretation of observational data was supported by experimental work that demonstrated the significant contribution of DOC to light extinction, and by measurements, of phytoplankton productivity that showed greater light limitation in the upper estuary.
Temporal variability of remotely sensed suspended sediment and sea surface temperature patterns in Mobile Bay, Alabama
Estuaries - Tập 13 Số 2 - Trang 155-160 - 1990
Rucker, James B., Stumpf, Richard P., Schroeder, William W.
Distribution patterns of suspended sediments and sea surface temperatures in, Mobile Bay were derived from algorithms using digital data from the visible, near infrared, and infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-TIROS-N satellite. Closely spaced AVHRR scenes for January 20, 24, and 29, 1982, were compared with available environmental information taken during the same period. A complex interaction between river discharge, winds, and astronomical tides controlled the distribution patterns of suspended sediments. These same variables, coupled with air temperatures, also governed the distribution patterns of sea surface temperatures.
Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans
Estuaries - Tập 23 Số 5 - Trang 633-646 - 2000
Able, Kenneth W., Hagan, Stacy M.
The tidally inundated marsh surface is an importnat site for energy exchanges for many resident and transient species. In many areas along the East Coast of the U.S. the dominant vegetation,Spartina alterniflora, has been replaced by the common reed (Phragmites australis). This shift has caused concern about the impact ofPhragmites on marsh fauna but research in this area has been limited. During 1997 and 1998, we examined the effect ofPhragmites on fish and decapod crustacean use of the marsh surface in the brackish water reaches of the Mullica River, in southern New Jersey, U.S. Fish and decapod crustaceans were sampled with an array of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm) and with flumes (1.3 m wide×10 m long of 3.2-mm mesh). Fish (2–60 mm TL) dominated pit trap collections withFundulus heteroclitus andFundulus luciae significantly more abundant atSpartina sites.Fundulus heteroclitus was also the dominant fish (15–275 mm TL) collected in flumes but collections with this gear, including a number of species not collected in pit traps, showed no distinct preferences for different marsh vegetation types. Decapod crustaceans (1–48 mm CW) collected in pit traps were generally less abundant than fishes withCallinectes sapidus andPalaemonetes spp. most abundant inSpartina, whileRhithropanopeus harrisii was most abundant inPhragmites. The same decapod crustacean species (2–186 mm CW) dominanted the flume collections and, similar to the pattern of fish collected by the flumes, there were no distinct habitat preferences for different marsh vegetation types. As a result of these observations, with different sampling techniques, it appears there is an overall negative effect ofPhragmites on larval and small juvenile fish but less or no effect on larger fish and decapods crustaceans.
Tổng số: 26   
  • 1
  • 2
  • 3