z-ideals in lattices

Springer Science and Business Media LLC - Tập 85 - Trang 59-68 - 2019
Vinayak Joshi1, Shubhangi Kavishwar2
1Department of Mathematics, Savitribai Phule Pune University, Pune, India
2Department of Mathematics, College of Engineering, Pune, India

Tóm tắt

In this paper, we define z-ideals in bounded lattices. A separation theorem for the existence of prime z-ideals is proved in distributive lattices. As a consequence, we prove that every z-ideal is the intersection of some prime zideals. Lastly, we prove a characterization of dually semi-complemented lattices.

Tài liệu tham khảo

D. D. Anderson, C. Jayaram and P. A. Phiri, Baer lattices, Acta Sci. Math. (Szeged), 59 (1994), 61–74. S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics 78, Springer, 1981. L. Gillman and M. Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.–Toronto–London–New York, 1960. G. Grätzer, General Lattice Theory, Second Edition, Birkhäuser Verlag, 1998. C. B. Huijsmans and de Pagter, On z-ideals and d-ideals in Riesz spaces I., Nederl. Akad. Wetensch. Indag. Math., 42 (1980), 183–195. C. Jayaram, Baer ideals in commutative semiprime rings, Indian J. Pure Appl. Math., 15 (1984), 855–864. M. F. Janowitz, Section semi-complemented lattices, Math. Z., 108 (1968), 63–76. V. Joshi and N. Mundlik, Bear ideals in 0-distributive posets, Asian- Euro. J. Math., 9 (2016), 1650055 (16 pages). C. W. Kohls, Ideals in rings of continuous functions, Fund. Math., 45 (1957), 28–50. G. Mason, z-Ideals and prime ideals, J. Algebra, 26 (1973), 280–297. J. B. Nation, Notes on Lattice Theory, http://people.math.sc.edu/mcnulty/alglatvar/lat0. pdf. Y. S. Pawar and N. K. Thakare, 0-distributive semilattices, Canad. Math. Bull., 21 (1978), 469–481. Y. Rav, Semiprime ideals in general lattices, J. Pure Appl. Algebra, 56 (1989), 105–118. T. P. Speed, A note on commutative Baer rings, J. Austral. Math. Soc., 14 (1972), 257–263. N. K. Thakare and Y. S. Pawar, Minimal prime ideals in 0-distributive semilattices, Period. Math. Hungar., 3 (1982), 237–246. J. C. Varlet, A generalization of the notion of pseudo-complementedness, Bull. Soc. Roy. Sci. Liêge, 37 (1968), 149–158.