z-ideals in lattices
Tóm tắt
In this paper, we define z-ideals in bounded lattices. A separation theorem for the existence of prime z-ideals is proved in distributive lattices. As a consequence, we prove that every z-ideal is the intersection of some prime zideals. Lastly, we prove a characterization of dually semi-complemented lattices.
Tài liệu tham khảo
D. D. Anderson, C. Jayaram and P. A. Phiri, Baer lattices, Acta Sci. Math. (Szeged), 59 (1994), 61–74.
S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics 78, Springer, 1981.
L. Gillman and M. Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.–Toronto–London–New York, 1960.
G. Grätzer, General Lattice Theory, Second Edition, Birkhäuser Verlag, 1998.
C. B. Huijsmans and de Pagter, On z-ideals and d-ideals in Riesz spaces I., Nederl. Akad. Wetensch. Indag. Math., 42 (1980), 183–195.
C. Jayaram, Baer ideals in commutative semiprime rings, Indian J. Pure Appl. Math., 15 (1984), 855–864.
M. F. Janowitz, Section semi-complemented lattices, Math. Z., 108 (1968), 63–76.
V. Joshi and N. Mundlik, Bear ideals in 0-distributive posets, Asian- Euro. J. Math., 9 (2016), 1650055 (16 pages).
C. W. Kohls, Ideals in rings of continuous functions, Fund. Math., 45 (1957), 28–50.
G. Mason, z-Ideals and prime ideals, J. Algebra, 26 (1973), 280–297.
J. B. Nation, Notes on Lattice Theory, http://people.math.sc.edu/mcnulty/alglatvar/lat0. pdf.
Y. S. Pawar and N. K. Thakare, 0-distributive semilattices, Canad. Math. Bull., 21 (1978), 469–481.
Y. Rav, Semiprime ideals in general lattices, J. Pure Appl. Algebra, 56 (1989), 105–118.
T. P. Speed, A note on commutative Baer rings, J. Austral. Math. Soc., 14 (1972), 257–263.
N. K. Thakare and Y. S. Pawar, Minimal prime ideals in 0-distributive semilattices, Period. Math. Hungar., 3 (1982), 237–246.
J. C. Varlet, A generalization of the notion of pseudo-complementedness, Bull. Soc. Roy. Sci. Liêge, 37 (1968), 149–158.