volBrain: An Online MRI Brain Volumetry System
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmed, 2002, A modified fuzzy C-Means algorithm for bias field estimation and segmentation of MRI data, IEEE Trans. Med. Imaging, 21, 193, 10.1109/42.996338
Avants, 2009, Advanced normalization tools (ANTS), Insight J., 2, 1
Barnes, 2008, A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus, Neuroimage, 40, 1655, 10.1016/j.neuroimage.2008.01.012
Brummer, 1991, Hough transform detection of the longitudinal fissure in tomographic head images, IEEE Trans. Med. Imaging, 10, 74, 10.1109/42.75613
Buades, 2005, A non local algorithm for image denoising, IEEE International Conference on Computer Vision and Pattern Recognition, 60
Chupin, 2007, Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer's disease, Neuroimage, 34, 996, 10.1016/j.neuroimage.2006.10.035
Collins, 1995, Automatic 3-D model-based neuroanatomical segmentation, Hum. Brain Mapp, 3, 190, 10.1002/hbm.460030304
Collins, 2010, Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion, Neuroimage, 52, 1355, 10.1016/j.neuroimage.2010.04.193
Coupé, 2012, Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease, Neuroimage, 59, 3736, 10.1016/j.neuroimage.2011.10.080
Coupé, 2011, Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation, Neuroimage, 54, 940, 10.1016/j.neuroimage.2010.09.018
Coupé, 2008, An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, IEEE Trans. Med. Imaging, 27, 425, 10.1109/TMI.2007.906087
Eskildsen, 2012, BEaST: Brain Extraction based on nonlocal Segmentation Technique, Neuroimage, 59, 2362, 10.1016/j.neuroimage.2011.09.012
Fischl, 2002, Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain, Neuron, 33, 341, 10.1016/S0896-6273(02)00569-X
Frisoni, 2011, Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use, Alzheimer's Dement., 7, 171, 10.1016/j.jalz.2010.06.007
Frisoni, 2015, The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity, Alzheimers Dement, 11, 111, 10.1016/j.jalz.2014.05.1756
Gousias, 2008, Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest, Neuroimage, 40, 672, 10.1016/j.neuroimage.2007.11.034
Hata, 2000, Automated segmentation of human brain MR images aided by fuzzy information granulation and fuzzy inference, IEEE Trans. Sys. Man Cybernet. C Appli. Rev., 30, 381, 10.1109/5326.885120
Heckemann, 2006, Automatic anatomical brain MRI segmentation combining label propagation and decision fusion, Neuroimage, 33, 115, 10.1016/j.neuroimage.2006.05.061
Ibáñez, 2003, The ITK Software Guide
Kempton, 2011, A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: evaluation of a novel lateral ventricle segmentation method, Neuroimage, 58, 1051, 10.1016/j.neuroimage.2011.06.080
Larsson, 2001, Imaging Vision: Functional Mapping of Intermediate Visual Processes in Man.
Leung, 2011, Brain MAPS: an automated, accurate and robust brain extraction technique using a template library, Neuroimage, 55, 1091, 10.1016/j.neuroimage.2010.12.067
Lötjönen, 2010, Fast and robust multi-atlas segmentation of brain magnetic resonance images, Neuroimage, 49, 2352, 10.1016/j.neuroimage.2009.10.026
Maes, 1999, Quantification of cerebral grey and white matter asymmetry from MRI, Lecture Notes Comput. Sci., 1679, 348, 10.1007/10704282_38
Mangin, 2004, A framework to study the cortical folding patterns, Neuroimage, 23, 129, 10.1016/j.neuroimage.2004.07.019
Manjón, 2010b, Adaptive non-local means denoising of MR images with spatially varying noise levels, J. Magnet. Reson. Imaging, 31, 192, 10.1002/jmri.22003
Manjón, 2014, Non-local intracranial cavity extraction, Int. J. Biomed. Imaging, 2014, 820205, 10.1155/2014/820205
Manjón, 2008, Robust MRI brain tissue parameter estimation by multistage outlier rejection, Magn. Reson. Med., 59, 866, 10.1002/mrm.21521
Manjón, 2010a, Improved estimates of partial volume coefficients from noisy Brain MRI using spatial context, Neuroimage, 53, 480, 10.1016/j.neuroimage.2010.06.046
Morey, 2010, Scan-rescan reliability of subcortical brain volumes derived from automated segmentation, Hum. Brain Mapp, 31, 1751, 10.1002/hbm.20973
Næss-Schmidt, 2016, Automatic thalamus and hippocampus segmentation from MP2RAGE: comparison of publicly available methods and implications for DTI quantification, IJCARS, 2016, 1, 10.1007/s11548-016-1433-0
Nenadic, 2010, Auditory hallucinations and brain structure in schizophrenia: a VBM study, Br. J. Psychiatry, 196, 412, 10.1192/bjp.bp.109.070441
Patenaude, 2011, A Bayesian model of shape and appearance for subcortical brain segmentation, Neuroimage, 56, 907, 10.1016/j.neuroimage.2011.02.046
Prima, 2002, Computation of the mid-sagittal plane in 3D brain images, IEEE Trans. Med. Imaging, 21, 122, 10.1109/42.993131
Rohlfing, 2004, Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains, Neuroimage, 21, 1428, 10.1016/j.neuroimage.2003.11.010
Romero, 2015, Non-local automatic Brain hemisphere segmentation, Magnet. Reson. Imaging, 33, 474, 10.1016/j.mri.2015.02.005
Rousseau, 2011, A supervised patch-based approach for human brain labeling, IEEE Trans. Med., 30, 1852, 10.1109/TMI.2011.2156806
Sandor, 1997, Surface-based labeling of cortical anatomy using a deformable atlas, IEEE Trans. Med. Imaging, 16, 41, 10.1109/42.552054
Shen, 2002, Measuring size and shape of the hippocampus in MR images using a deformable shape model, Neuroimage, 15, 422, 10.1006/nimg.2001.0987
Sled, 1998, A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Trans. Med. Imaging, 17, 87, 10.1109/42.668698
Sun, 1997, 3D symmetry detection using the extended Gaussian image, IEEE Trans. Pattern Anal. Machine Intellig., 19, 164, 10.1109/34.574800
Tarek, 2014, CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research, Front. Neuroinform., 8, 10.3389/fninf.2014.00054
Tohka, 2004, Fast and robust parameter estimation for statistical partial volume models in brain MRI, Neuroimage, 23, 84, 10.1016/j.neuroimage.2004.05.007
Tomasi, 1998, Bilateral filtering for gray and color images, Proceedings of the IEEE International Conference on Computer Vision, 839
Tustison, 2010, N4ITK: improved N3 bias correction, IEEE Transac. Med. Imaging, 29, 1310, 10.1109/TMI.2010.2046908
Van Horn, 2014, Human neuroimaging as a “Big Data” science, Brain Imaging Behav, 8, 323, 10.1007/s11682-013-9255-y
Wells, 1996, Adaptive segmentation of MRI data, IEEE Transac. Med. Imaging, 15, 429, 10.1109/42.511747
Xu, 2015, A connectome computation system for discovery science of brain, Sci. Bull., 60, 86, 10.1007/s11434-014-0698-3
Zhao, 2010, Automatic cerebral and cerebellar hemisphere segmentation in 3D MRI: adaptive disconnection algorithm, Med. Image Anal., 14, 360, 10.1016/j.media.2010.02.001