t-Structures with Grothendieck hearts via functor categories
Tóm tắt
We study when the heart of a t-structure in a triangulated category
$$\mathcal {D}$$
with coproducts is AB5 or a Grothendieck category. If
$$\mathcal {D}$$
satisfies Brown representability, a t-structure has an AB5 heart with an injective cogenerator and coproduct-preserving associated homological functor if, and only if, the coaisle has a pure-injective t-cogenerating object. If
$$\mathcal {D}$$
is standard well generated, such a heart is automatically a Grothendieck category. For compactly generated t-structures (in any ambient triangulated category with coproducts), we prove that the heart is a locally finitely presented Grothendieck category. We use functor categories and the proofs rely on two main ingredients. Firstly, we express the heart of any t-structure in any triangulated category as a Serre quotient of the category of finitely presented additive functors for suitable choices of subcategories of the aisle or the co-aisle that we, respectively, call t-generating or t-cogenerating subcategories. Secondly, we study coproduct-preserving homological functors from
$$\mathcal {D}$$
to complete AB5 abelian categories with injective cogenerators and classify them, up to a so-called computational equivalence, in terms of pure-injective objects in
$$\mathcal {D}$$
. This allows us to show that any standard well generated triangulated category
$$\mathcal {D}$$
possesses a universal such coproduct-preserving homological functor, to develop a purity theory and to prove that pure-injective objects always cogenerate t-structures in such triangulated categories.
Tài liệu tham khảo
Angeleri-Hügel, L., Marks, F., Vitória, J.: Torsion pairs in silting theory. Pacific J. Math. 291(2), 257–278 (2017)
Aihara, T., Iyama, O.: Silting mutation in triangulated categories. J. Lond. Math. Soc. (2) 85(3), 633–668 (2012)
Auslander, M., Reiten, I.: Stable equivalence of Artin algebras. In: Proceedings of the Conference on Orders, Group Rings and Related Topics (Ohio State Univ., Columbus, Ohio, 1972), pp. 8–71. Lecture Notes in Math., Vol. 353 (1973)
Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories, Volume 189 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1994)
Auslander, M., Smalø, S.O.: Preprojective modules over Artin algebras. J. Algebra 66(1), 61–122 (1980)
Tarrío, L.A., López, A.J., Salorio, M.J.S.: Localization in categories of complexes and unbounded resolutions. Canad. J. Math. 52(2), 225–247 (2000)
Auslander, M.: Coherent functors. In: Proceedings of the Conference on Categorical Algebra (La Jolla, Calif., 1965), pp. 189–231. Springer, New York (1966)
Bazzoni, S.: The \(t\)-structure induced by an \(n\)-tilting module. Trans. Amer. Math. Soc. 371(9), 6309–6340 (2019)
Beĭlinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analysis and topology on singular spaces. I (Luminy, 1981), volume 100 of Astérisque, pp. 5–171. Soc. Math. France, Paris (1982)
Brown, E.H., Jr., Comenetz, M.: Pontrjagin duality for generalized homology and cohomology theories. Amer. J. Math. 98(1), 1–27 (1976)
Bazzoni, S., Herzog, I., Příhoda, P., Šaroch, J., Trlifaj, J.: Pure projective tilting modules. Doc. Math. 25, 401–424 (2020)
Bondarko, M.V.: Weight structures; weight filtrations, spectral sequences, and complexes (for motives and in general). J. K-Theory 6(3), 387–504 (2010)
Bondarko, M.V.: On torsion pairs, (well generated) weight structures, adjacent \(t\)-structures, and related (co)homological functors. Preprint available at arXiv:1611.00754v7. (2016)
Bondarko, M.V.: On perfectly generated weight structures and adjacent \(t\)-structures. Math. Z. 300(2), 1421–1454 (2022)
Bezrukavnikov, R., Positselski, L.: On semi-infinite cohomology of finite-dimensional graded algebras. Compos. Math. 146(2), 480–496 (2010)
Bazzoni, S., Positselski, L.: Covers and direct limits: a contramodule-based approach. Math. Z. 299(1–2), 1–52 (2021)
Crawley-Boevey, W.: Locally finitely presented additive categories. Comm. Algebra 22(5), 1641–1674 (1994)
Colpi, R., Gregorio, E., Mantese, F.: On the heart of a faithful torsion theory. J. Algebra 307(2), 841–863 (2007)
Colpi, R., Mantese, F., Tonolo, A.: When the heart of a faithful torsion pair is a module category. J. Pure Appl. Algebra 215(12), 2923–2936 (2011)
Čoupek, P., Št\(^{\prime }\)ovíček, J.: Cotilting sheaves on Noetherian schemes. Math. Z. 296(1–2), 275–312 (2020)
Faith, C.: Algebra: rings, modules and categories. I. Springer-Verlag, New York-Heidelberg (1973). Die Grundlehren der mathematischen Wissenschaften, Band 190
Freyd, P.: Representations in abelian categories. In: Proceedings of the Conference on Categorical Algebra (La Jolla, Calif., 1965), pp. 95–120. Springer, New York (1966)
Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)
Grothendieck, A.: Sur quelques points d’algèbre homologique. Tohoku Math. J. 2(9), 119–221 (1957)
Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer, New York (1967)
Heider, A.: Two results from Morita theory of stable model categories. Preprint available at arXiv:0707.0707. (2007)
Herzog, I.: The Ziegler spectrum of a locally coherent Grothendieck category. Proc. London Math. Soc. (3) 74(3), 503–558 (1997)
Hovey, M., Palmieri, J.H., Strickland, N.P.: Axiomatic stable homotopy theory. Mem. Amer. Math. Soc. 128(610), x+114 (1997)
Keller, B., Nicolás, P.: Weight structures and simple dg modules for positive dg algebras. Int. Math. Res. Not. IMRN 5, 1028–1078 (2013)
Krause, H.: The spectrum of a locally coherent category. J. Pure Appl. Algebra 114(3), 259–271 (1997)
Krause, H.: Functors on locally finitely presented additive categories. Colloq. Math. 75(1), 105–132 (1998)
Krause, H.: Smashing subcategories and the telescope conjecture–an algebraic approach. Invent. Math. 139(1), 99–133 (2000)
Krause, H.: On Neeman’s well generated triangulated categories. Doc. Math. 6, 121–126 (2001)
Krause, H.: The spectrum of a module category. Mem. Amer. Math. Soc. 149(707), x+125 (2001)
Krause, H.: A Brown representability theorem via coherent functors. Topology 41(4), 853–861 (2002)
Krause, H.: Coherent functors in stable homotopy theory. Fund. Math. 173(1), 33–56 (2002)
Krause, H.: Cohomological quotients and smashing localizations. Amer. J. Math. 127(6), 1191–1246 (2005)
Krause, H.: Derived categories, resolutions, and Brown representability. In: Interactions between homotopy theory and algebra, volume 436 of Contemp. Math., pP. 101–139. Amer. Math. Soc., Providence, RI (2007)
Krause, Henning: Localization theory for triangulated categories. In: Triangulated categories, volume 375 of London Math. Soc. Lecture Note Ser., pp. 161–235. Cambridge Univ. Press, Cambridge (2010)
Keller, B., Vossieck, D.: Aisles in derived categories. Bull. Soc. Math. Belge 40, 239-253 (1988). Deuxième Contact Franco-Belge en Algèbre (Faulx-les-Tombes, 1987)
Laking, R.: Purity in compactly generated derivators and t-structures with Grothendieck hearts. Math. Z. 295(3–4), 1615–1641 (2020)
Lowen, W.: A generalization of the Gabriel-Popescu theorem. J. Pure Appl. Algebra 190(1–3), 197–211 (2004)
Lowen, W.: Linearized topologies and deformation theory. Topol. Appl. 200, 176–211 (2016)
Lurie, J.: Higher Topos Theory, Volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (2009)
Lurie, J.: Higher algebra. Book project available at https://www.math.ias.edu/~lurie/papers/HA.pdf. (2017)
Lurie, J.: Spectral algebraic geometry. Book project available at https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf. (2018)
Laking, R., Vitória, J.: Definability and approximations in triangulated categories. Pacific J. Math. 306(2), 557–586 (2020)
Mitchell, B.: Rings with several objects. Adv. Math. 8, 1–161 (1972)
Mitchell, B.: A quick proof of the Gabriel-Popesco theorem. J. Pure Appl. Algebra 20(3), 313–315 (1981)
Neeman, A.: On the derived category of sheaves on a manifold. Doc. Math. 6, 483–488 (2001)
Neeman, A.: Triangulated Categories, Volume 148 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (2001)
Neeman, A.: The \(t\)-structures generated by objects. Trans. Amer. Math. Soc. 374(11), 8161–8175 (2021)
Nicolás, P., Saorín, M.: Parametrizing recollement data for triangulated categories. J. Algebra 322(4), 1220–1250 (2009)
Nicolás, P., Saorín, M., Zvonareva, A.: Silting theory in triangulated categories with coproducts. J. Pure Appl. Algebra 223(6), 2273–2319 (2019)
Pauksztello, D.: Compact corigid objects in triangulated categories and co-\(t\)-structures. Cent. Eur. J. Math. 6(1), 25–42 (2008)
Popescu, N.: Abelian categories with applications to rings and modules. Academic Press, London-New York (1973). London Mathematical Society Monographs, No. 3
Porta, M.: The Popescu-Gabriel theorem for triangulated categories. Adv. Math. 225(3), 1669–1715 (2010)
Prest, M.: Purity, spectra and localisation, volume 121 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2009)
Parra, C.E., Saorín, M.: Direct limits in the heart of a t-structure: the case of a torsion pair. J. Pure Appl. Algebra 219(9), 4117–4143 (2015)
Parra, C.E., Saorín, M.: Hearts of t-structures in the derived category of a commutative Noetherian ring. Trans. Amer. Math. Soc. 369(11), 7789–7827 (2017)
Positselski, L., Št\(^{\prime }\)ovíček, J.: Exactness of direct limits for abelian categories with an injective cogenerator. J. Pure Appl. Algebra 223(8), 3330–3340 (2019)
Positselski, L., Št\(^{\prime }\)ovíček, J.: The tilting-cotilting correspondence. Int. Math. Res. Not. IMRN 1, 191–276 (2021)
Parra, C.E., Saorín, M., Virili, S.: Torsion pairs in categories of modules over a preadditive category. Bull. Iranian Math. Soc. 47(4), 1135–1171 (2021)
Šaroch, J.: Approximations and Mittag-Leffler conditions the tools. Israel J. Math. 226(2), 737–756 (2018)
Schwede, Stefan: Algebraic versus topological triangulated categories. In: Triangulated categories, volume 375 of London Math. Soc. Lecture Note Ser., pages 389–407. Cambridge Univ. Press, Cambridge (2010)
Shaul, L.: Injective DG-modules over non-positive DG-rings. J. Algebra 515, 102–156 (2018)
Št\(^{\prime }\)ovíček, J., Pospíšil, D.: On compactly generated torsion pairs and the classification of co-\(t\)-structures for commutative noetherian rings. Trans. Amer. Math. Soc. 368(9), 6325–6361 (2016)
Saorín, M., Št\(^{\prime }\)ovíček, J.: On exact categories and applications to triangulated adjoints and model structures. Adv. Math. 228(2), 968–1007 (2011)
Saorín, M., Št\(^{\prime }\)ovíček, J., Virili, S.: \(t\)-Structures on stable derivators and Grothendieck hearts. Adv. Math. 429, article 109139 (2023)
Stenström, B.: Rings of quotients. Die Grundlehren der Mathematischen Wissenschaften, Band 217, An introduction to methods of ring theory. Springer, New York (1975)
Št\(^{\prime }\)ovíček, J.: Derived equivalences induced by big cotilting modules. Adv. Math. 263, 45–87 (2014)
Wraith, G.C.: Algebraic theories. Lectures Autumn 1969. Lecture Notes Series, No. 22. Matematisk Institut, Aarhus Universitet, Aarhus (1970)