t-Structures with Grothendieck hearts via functor categories

Selecta Mathematica - Tập 29 - Trang 1-73 - 2023
Manuel Saorín1, Jan Št’ovíček2
1Departamento de Matemáticas, Universidad de Murcia, Espinardo, Spain
2Department of Algebra, Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

Tóm tắt

We study when the heart of a t-structure in a triangulated category $$\mathcal {D}$$ with coproducts is AB5 or a Grothendieck category. If $$\mathcal {D}$$ satisfies Brown representability, a t-structure has an AB5 heart with an injective cogenerator and coproduct-preserving associated homological functor if, and only if, the coaisle has a pure-injective t-cogenerating object. If $$\mathcal {D}$$ is standard well generated, such a heart is automatically a Grothendieck category. For compactly generated t-structures (in any ambient triangulated category with coproducts), we prove that the heart is a locally finitely presented Grothendieck category. We use functor categories and the proofs rely on two main ingredients. Firstly, we express the heart of any t-structure in any triangulated category as a Serre quotient of the category of finitely presented additive functors for suitable choices of subcategories of the aisle or the co-aisle that we, respectively, call t-generating or t-cogenerating subcategories. Secondly, we study coproduct-preserving homological functors from $$\mathcal {D}$$ to complete AB5 abelian categories with injective cogenerators and classify them, up to a so-called computational equivalence, in terms of pure-injective objects in  $$\mathcal {D}$$ . This allows us to show that any standard well generated triangulated category $$\mathcal {D}$$ possesses a universal such coproduct-preserving homological functor, to develop a purity theory and to prove that pure-injective objects always cogenerate t-structures in such triangulated categories.

Tài liệu tham khảo

Angeleri-Hügel, L., Marks, F., Vitória, J.: Torsion pairs in silting theory. Pacific J. Math. 291(2), 257–278 (2017) Aihara, T., Iyama, O.: Silting mutation in triangulated categories. J. Lond. Math. Soc. (2) 85(3), 633–668 (2012) Auslander, M., Reiten, I.: Stable equivalence of Artin algebras. In: Proceedings of the Conference on Orders, Group Rings and Related Topics (Ohio State Univ., Columbus, Ohio, 1972), pp. 8–71. Lecture Notes in Math., Vol. 353 (1973) Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories, Volume 189 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1994) Auslander, M., Smalø, S.O.: Preprojective modules over Artin algebras. J. Algebra 66(1), 61–122 (1980) Tarrío, L.A., López, A.J., Salorio, M.J.S.: Localization in categories of complexes and unbounded resolutions. Canad. J. Math. 52(2), 225–247 (2000) Auslander, M.: Coherent functors. In: Proceedings of the Conference on Categorical Algebra (La Jolla, Calif., 1965), pp. 189–231. Springer, New York (1966) Bazzoni, S.: The \(t\)-structure induced by an \(n\)-tilting module. Trans. Amer. Math. Soc. 371(9), 6309–6340 (2019) Beĭlinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analysis and topology on singular spaces. I (Luminy, 1981), volume 100 of Astérisque, pp. 5–171. Soc. Math. France, Paris (1982) Brown, E.H., Jr., Comenetz, M.: Pontrjagin duality for generalized homology and cohomology theories. Amer. J. Math. 98(1), 1–27 (1976) Bazzoni, S., Herzog, I., Příhoda, P., Šaroch, J., Trlifaj, J.: Pure projective tilting modules. Doc. Math. 25, 401–424 (2020) Bondarko, M.V.: Weight structures; weight filtrations, spectral sequences, and complexes (for motives and in general). J. K-Theory 6(3), 387–504 (2010) Bondarko, M.V.: On torsion pairs, (well generated) weight structures, adjacent \(t\)-structures, and related (co)homological functors. Preprint available at arXiv:1611.00754v7. (2016) Bondarko, M.V.: On perfectly generated weight structures and adjacent \(t\)-structures. Math. Z. 300(2), 1421–1454 (2022) Bezrukavnikov, R., Positselski, L.: On semi-infinite cohomology of finite-dimensional graded algebras. Compos. Math. 146(2), 480–496 (2010) Bazzoni, S., Positselski, L.: Covers and direct limits: a contramodule-based approach. Math. Z. 299(1–2), 1–52 (2021) Crawley-Boevey, W.: Locally finitely presented additive categories. Comm. Algebra 22(5), 1641–1674 (1994) Colpi, R., Gregorio, E., Mantese, F.: On the heart of a faithful torsion theory. J. Algebra 307(2), 841–863 (2007) Colpi, R., Mantese, F., Tonolo, A.: When the heart of a faithful torsion pair is a module category. J. Pure Appl. Algebra 215(12), 2923–2936 (2011) Čoupek, P., Št\(^{\prime }\)ovíček, J.: Cotilting sheaves on Noetherian schemes. Math. Z. 296(1–2), 275–312 (2020) Faith, C.: Algebra: rings, modules and categories. I. Springer-Verlag, New York-Heidelberg (1973). Die Grundlehren der mathematischen Wissenschaften, Band 190 Freyd, P.: Representations in abelian categories. In: Proceedings of the Conference on Categorical Algebra (La Jolla, Calif., 1965), pp. 95–120. Springer, New York (1966) Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962) Grothendieck, A.: Sur quelques points d’algèbre homologique. Tohoku Math. J. 2(9), 119–221 (1957) Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer, New York (1967) Heider, A.: Two results from Morita theory of stable model categories. Preprint available at arXiv:0707.0707. (2007) Herzog, I.: The Ziegler spectrum of a locally coherent Grothendieck category. Proc. London Math. Soc. (3) 74(3), 503–558 (1997) Hovey, M., Palmieri, J.H., Strickland, N.P.: Axiomatic stable homotopy theory. Mem. Amer. Math. Soc. 128(610), x+114 (1997) Keller, B., Nicolás, P.: Weight structures and simple dg modules for positive dg algebras. Int. Math. Res. Not. IMRN 5, 1028–1078 (2013) Krause, H.: The spectrum of a locally coherent category. J. Pure Appl. Algebra 114(3), 259–271 (1997) Krause, H.: Functors on locally finitely presented additive categories. Colloq. Math. 75(1), 105–132 (1998) Krause, H.: Smashing subcategories and the telescope conjecture–an algebraic approach. Invent. Math. 139(1), 99–133 (2000) Krause, H.: On Neeman’s well generated triangulated categories. Doc. Math. 6, 121–126 (2001) Krause, H.: The spectrum of a module category. Mem. Amer. Math. Soc. 149(707), x+125 (2001) Krause, H.: A Brown representability theorem via coherent functors. Topology 41(4), 853–861 (2002) Krause, H.: Coherent functors in stable homotopy theory. Fund. Math. 173(1), 33–56 (2002) Krause, H.: Cohomological quotients and smashing localizations. Amer. J. Math. 127(6), 1191–1246 (2005) Krause, H.: Derived categories, resolutions, and Brown representability. In: Interactions between homotopy theory and algebra, volume 436 of Contemp. Math., pP. 101–139. Amer. Math. Soc., Providence, RI (2007) Krause, Henning: Localization theory for triangulated categories. In: Triangulated categories, volume 375 of London Math. Soc. Lecture Note Ser., pp. 161–235. Cambridge Univ. Press, Cambridge (2010) Keller, B., Vossieck, D.: Aisles in derived categories. Bull. Soc. Math. Belge 40, 239-253 (1988). Deuxième Contact Franco-Belge en Algèbre (Faulx-les-Tombes, 1987) Laking, R.: Purity in compactly generated derivators and t-structures with Grothendieck hearts. Math. Z. 295(3–4), 1615–1641 (2020) Lowen, W.: A generalization of the Gabriel-Popescu theorem. J. Pure Appl. Algebra 190(1–3), 197–211 (2004) Lowen, W.: Linearized topologies and deformation theory. Topol. Appl. 200, 176–211 (2016) Lurie, J.: Higher Topos Theory, Volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (2009) Lurie, J.: Higher algebra. Book project available at https://www.math.ias.edu/~lurie/papers/HA.pdf. (2017) Lurie, J.: Spectral algebraic geometry. Book project available at https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf. (2018) Laking, R., Vitória, J.: Definability and approximations in triangulated categories. Pacific J. Math. 306(2), 557–586 (2020) Mitchell, B.: Rings with several objects. Adv. Math. 8, 1–161 (1972) Mitchell, B.: A quick proof of the Gabriel-Popesco theorem. J. Pure Appl. Algebra 20(3), 313–315 (1981) Neeman, A.: On the derived category of sheaves on a manifold. Doc. Math. 6, 483–488 (2001) Neeman, A.: Triangulated Categories, Volume 148 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (2001) Neeman, A.: The \(t\)-structures generated by objects. Trans. Amer. Math. Soc. 374(11), 8161–8175 (2021) Nicolás, P., Saorín, M.: Parametrizing recollement data for triangulated categories. J. Algebra 322(4), 1220–1250 (2009) Nicolás, P., Saorín, M., Zvonareva, A.: Silting theory in triangulated categories with coproducts. J. Pure Appl. Algebra 223(6), 2273–2319 (2019) Pauksztello, D.: Compact corigid objects in triangulated categories and co-\(t\)-structures. Cent. Eur. J. Math. 6(1), 25–42 (2008) Popescu, N.: Abelian categories with applications to rings and modules. Academic Press, London-New York (1973). London Mathematical Society Monographs, No. 3 Porta, M.: The Popescu-Gabriel theorem for triangulated categories. Adv. Math. 225(3), 1669–1715 (2010) Prest, M.: Purity, spectra and localisation, volume 121 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2009) Parra, C.E., Saorín, M.: Direct limits in the heart of a t-structure: the case of a torsion pair. J. Pure Appl. Algebra 219(9), 4117–4143 (2015) Parra, C.E., Saorín, M.: Hearts of t-structures in the derived category of a commutative Noetherian ring. Trans. Amer. Math. Soc. 369(11), 7789–7827 (2017) Positselski, L., Št\(^{\prime }\)ovíček, J.: Exactness of direct limits for abelian categories with an injective cogenerator. J. Pure Appl. Algebra 223(8), 3330–3340 (2019) Positselski, L., Št\(^{\prime }\)ovíček, J.: The tilting-cotilting correspondence. Int. Math. Res. Not. IMRN 1, 191–276 (2021) Parra, C.E., Saorín, M., Virili, S.: Torsion pairs in categories of modules over a preadditive category. Bull. Iranian Math. Soc. 47(4), 1135–1171 (2021) Šaroch, J.: Approximations and Mittag-Leffler conditions the tools. Israel J. Math. 226(2), 737–756 (2018) Schwede, Stefan: Algebraic versus topological triangulated categories. In: Triangulated categories, volume 375 of London Math. Soc. Lecture Note Ser., pages 389–407. Cambridge Univ. Press, Cambridge (2010) Shaul, L.: Injective DG-modules over non-positive DG-rings. J. Algebra 515, 102–156 (2018) Št\(^{\prime }\)ovíček, J., Pospíšil, D.: On compactly generated torsion pairs and the classification of co-\(t\)-structures for commutative noetherian rings. Trans. Amer. Math. Soc. 368(9), 6325–6361 (2016) Saorín, M., Št\(^{\prime }\)ovíček, J.: On exact categories and applications to triangulated adjoints and model structures. Adv. Math. 228(2), 968–1007 (2011) Saorín, M., Št\(^{\prime }\)ovíček, J., Virili, S.: \(t\)-Structures on stable derivators and Grothendieck hearts. Adv. Math. 429, article 109139 (2023) Stenström, B.: Rings of quotients. Die Grundlehren der Mathematischen Wissenschaften, Band 217, An introduction to methods of ring theory. Springer, New York (1975) Št\(^{\prime }\)ovíček, J.: Derived equivalences induced by big cotilting modules. Adv. Math. 263, 45–87 (2014) Wraith, G.C.: Algebraic theories. Lectures Autumn 1969. Lecture Notes Series, No. 22. Matematisk Institut, Aarhus Universitet, Aarhus (1970)