sox1a:eGFP transgenic line and single-cell transcriptomics reveal the origin of zebrafish intraspinal serotonergic neurons

iScience - Tập 26 - Trang 107342 - 2023
Fushun Chen1, Melina Köhler1, Gokhan Cucun1, Masanari Takamiya1, Caghan Kizil2,3, Mehmet Ilyas Cosacak2, Sepand Rastegar1
1Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
2German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
3Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY 10032, USA

Tài liệu tham khảo

Ferg, 2014, Gene transcription in the zebrafish embryo: regulators and networks, Brief. Funct. Genomics, 13, 131, 10.1093/bfgp/elt044 Reiter, 2017, Combinatorial function of transcription factors and cofactors, Curr. Opin. Genet. Dev., 43, 73, 10.1016/j.gde.2016.12.007 Dessaud, 2008, Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network, Development, 135, 2489, 10.1242/dev.009324 Sagner, 2019, Establishing Neuronal Diversity in the Spinal Cord: A Time and a Place, Development, 146, 10.1242/dev.182154 Le Dréau, 2012, Dorsal-ventral patterning of the neural tube: a tale of three signals, Dev. Neurobiol., 72, 1471, 10.1002/dneu.22015 Alaynick, 2011, SnapShot: spinal cord development, Cell, 146, 178, 10.1016/j.cell.2011.06.038 Lu, 2015, Molecular and cellular development of spinal cord locomotor circuitry, Front. Mol. Neurosci., 8, 25, 10.3389/fnmol.2015.00025 Lai, 2016, Making sense out of spinal cord somatosensory development, Development, 143, 3434, 10.1242/dev.139592 Goulding, 2009, Circuits controlling vertebrate locomotion: moving in a new direction, Nat. Rev. Neurosci., 10, 507, 10.1038/nrn2608 McMahon, 2000, Neural patterning: the role of Nkx genes in the ventral spinal cord, Genes Dev., 14, 2261, 10.1101/gad.840800 Huang, 2012, Attenuation of Notch and Hedgehog signaling is required for fate specification in the spinal cord, PLoS Genet., 8, 10.1371/journal.pgen.1002762 Jacobs, 2022, Temporal cell fate determination in the spinal cord is mediated by the duration of Notch signalling, Dev. Biol., 489, 1, 10.1016/j.ydbio.2022.05.010 Schäfer, 2007, Discontinuous organization and specification of the lateral floor plate in zebrafish, Dev. Biol., 301, 117, 10.1016/j.ydbio.2006.09.018 Yang, 2010, Regulatory interactions specifying Kolmer-Agduhr interneurons, Development, 137, 2713, 10.1242/dev.048470 Andrews, 2019, New perspectives on the mechanisms establishing the dorsal-ventral axis of the spinal cord, Curr. Top. Dev. Biol., 132, 417, 10.1016/bs.ctdb.2018.12.010 Yang, 2020, The Genetic Programs Specifying Kolmer-Agduhr Interneurons, Front. Neurosci., 14, 10.3389/fnins.2020.577879 Delile, 2019, Single Cell Transcriptomics Reveals Spatial and Temporal Dynamics of Gene Expression in the Developing Mouse Spinal Cord, Development, 146 Andrzejczuk, 2018, Tal1, Gata2a, and Gata3 Have Distinct Functions in the Development of V2b and Cerebrospinal Fluid-Contacting KA Spinal Neurons, Front. Neurosci., 12, 170, 10.3389/fnins.2018.00170 Gerber, 2019, The HMG box transcription factors Sox1a and Sox1b specify a new class of glycinergic interneuron in the spinal cord of zebrafish embryos, Development, 146 Karunaratne, 2002, GATA proteins identify a novel ventral interneuron subclass in the developing chick spinal cord, Dev. Biol., 249, 30, 10.1006/dbio.2002.0754 Li, 2005, Foxn4 acts synergistically with Mash1 to specify subtype identity of V2 interneurons in the spinal cord, Proc. Natl. Acad. Sci. USA, 102, 10688, 10.1073/pnas.0504799102 Panayi, 2010, Sox1 is required for the specification of a novel p2-derived interneuron subtype in the mouse ventral spinal cord, J. Neurosci., 30, 12274, 10.1523/JNEUROSCI.2402-10.2010 Smith, 2002, Coexpression of SCL and GATA3 in the V2 interneurons of the developing mouse spinal cord, Dev. Dyn., 224, 231, 10.1002/dvdy.10093 Zhou, 2000, GATA2 is required for the generation of V2 interneurons, Development, 127, 3829, 10.1242/dev.127.17.3829 Armant, 2013, Genome-wide, whole mount in situ analysis of transcriptional regulators in zebrafish embryos, Dev. Biol., 380, 351, 10.1016/j.ydbio.2013.05.006 Montgomery, 2018, Intraspinal serotonergic signaling suppresses locomotor activity in larval zebrafish, Dev. Neurobiol., 78, 807, 10.1002/dneu.22606 Montgomery, 2016, Intraspinal serotonergic neurons consist of two, temporally distinct populations in developing zebrafish, Dev. Neurobiol., 76, 673, 10.1002/dneu.22352 McLean, 2004, Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish, J. Comp. Neurol., 480, 38, 10.1002/cne.20280 McLean, 2004, Relationship of tyrosine hydroxylase and serotonin immunoreactivity to sensorimotor circuitry in larval zebrafish, J. Comp. Neurol., 480, 57, 10.1002/cne.20281 McLean, 2009, Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones, J. Neurosci., 29, 13566, 10.1523/JNEUROSCI.3277-09.2009 Barreiro-Iglesias, 2015, Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish, Cell Rep., 13, 924, 10.1016/j.celrep.2015.09.050 Gabriel, 2009, Serotonergic modulation of locomotion in zebrafish: endogenous release and synaptic mechanisms, J. Neurosci., 29, 10387, 10.1523/JNEUROSCI.1978-09.2009 Huang, 2021, An injury-induced serotonergic neuron subpopulation contributes to axon regrowth and function restoration after spinal cord injury in zebrafish, Nat. Commun., 12, 7093, 10.1038/s41467-021-27419-w Kuscha, 2012, Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish, J. Comp. Neurol., 520, 3604, 10.1002/cne.23115 Hao, 2021, Integrated analysis of multimodal single-cell data, Cell, 184, 3573, 10.1016/j.cell.2021.04.048 Spencer, 2017, Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function, Front. Cell. Neurosci., 11, 215, 10.3389/fncel.2017.00215 Deneris, 2018, Serotonin neuron development: shaping molecular and structural identities, Wiley Interdiscip Rev Dev Biol, 7, 10.1002/wdev.301 Deneris, 2012, Serotonergic transcriptional networks and potential importance to mental health, Nat. Neurosci., 15, 519, 10.1038/nn.3039 Jacobs, 2019, Notch signalling maintains Hedgehog responsiveness via a Gli-dependent mechanism during spinal cord patterning in zebrafish, Elife, 8, 10.7554/eLife.49252 Pattyn, 2003, Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors, Genes Dev., 17, 729, 10.1101/gad.255803 Scott, 2021, Temporal single-cell transcriptomes of zebrafish spinal cord pMN progenitors reveal distinct neuronal and glial progenitor populations, Dev. Biol., 479, 37, 10.1016/j.ydbio.2021.07.010 Fauq, 2007, A multigram chemical synthesis of the gamma-secretase inhibitor LY411575 and its diastereoisomers, Bioorg. Med. Chem. Lett., 17, 6392, 10.1016/j.bmcl.2007.07.062 Sagner, 2017, Morphogen interpretation: concentration, time, competence, and signaling dynamics, Wiley Interdiscip Rev Dev Biol, 6, 10.1002/wdev.271 Al Oustah, 2014, Dynamics of sonic hedgehog signaling in the ventral spinal cord are controlled by intrinsic changes in source cells requiring sulfatase 1, Development, 141, 1392, 10.1242/dev.101717 Craven, 2004, Gata2 specifies serotonergic neurons downstream of sonic hedgehog, Development, 131, 1165, 10.1242/dev.01024 Hendricks, 1999, The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes, J. Neurosci., 19, 10348, 10.1523/JNEUROSCI.19-23-10348.1999 Hendricks, 2003, Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior, Neuron, 37, 233, 10.1016/S0896-6273(02)01167-4 Krueger, 2008, Serotonergic transcription of human FEV reveals direct GATA factor interactions and fate of Pet-1-deficient serotonin neuron precursors, J. Neurosci., 28, 12748, 10.1523/JNEUROSCI.4349-08.2008 Scott, 2005, A differentially autoregulated Pet-1 enhancer region is a critical target of the transcriptional cascade that governs serotonin neuron development, J. Neurosci., 25, 2628, 10.1523/JNEUROSCI.4979-04.2005 Wyler, 2016, Pet-1 Switches Transcriptional Targets Postnatally to Regulate Maturation of Serotonin Neuron Excitability, J. Neurosci., 36, 1758, 10.1523/JNEUROSCI.3798-15.2016 Hilinski, 2016, Lmx1b is required for the glutamatergic fates of a subset of spinal cord neurons, Neural Dev., 11, 16, 10.1186/s13064-016-0070-1 El Manira, 2014, Dynamics and plasticity of spinal locomotor circuits, Curr. Opin. Neurobiol., 29, 133, 10.1016/j.conb.2014.06.016 Menelaou, 2019, Hierarchical control of locomotion by distinct types of spinal V2a interneurons in zebrafish, Nat. Commun., 10, 4197, 10.1038/s41467-019-12240-3 Song, 2018, V2a interneuron diversity tailors spinal circuit organization to control the vigor of locomotor movements, Nat. Commun., 9, 3370, 10.1038/s41467-018-05827-9 Lillesaar, 2007, The serotonergic phenotype is acquired by converging genetic mechanisms within the zebrafish central nervous system, Dev. Dyn., 236, 1072, 10.1002/dvdy.21095 Qiu, 2017, Reversed graph embedding resolves complex single-cell trajectories, Nat. Methods, 14, 979, 10.1038/nmeth.4402 Schneider, 2012, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9, 671, 10.1038/nmeth.2089 Wu, 2021, clusterProfiler 4.0: A universal enrichment tool for interpreting omics data, Innovation, 2 Ye, 2012, Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction, BMC Bioinf., 13, 134, 10.1186/1471-2105-13-134 Aleström, 2020, Zebrafish: Housing and husbandry recommendations, Lab. Anim., 54, 213, 10.1177/0023677219869037 Strähle, 2012, Zebrafish embryos as an alternative to animal experiments--a commentary on the definition of the onset of protected life stages in animal welfare regulations, Reprod. Toxicol., 33, 128, 10.1016/j.reprotox.2011.06.121 Westerfield, 2000 Kimmel, 1995, Stages of embryonic development of the zebrafish, Dev. Dyn., 203, 253, 10.1002/aja.1002030302 Cosacak, 2020, Protocol for Dissection and Dissociation of Zebrafish Telencephalon for Single-Cell Sequencing, STAR Protoc., 1, 10.1016/j.xpro.2020.100042 Cosacak, 2019, Single-Cell Transcriptomics Analyses of Neural Stem Cell Heterogeneity and Contextual Plasticity in a Zebrafish Brain Model of Amyloid Toxicity, Cell Rep., 27, 1307, 10.1016/j.celrep.2019.03.090 Zheng, 2017, Massively parallel digital transcriptional profiling of single cells, Nat. Commun., 8, 10.1038/ncomms14049 Lange, 2020, Single cell sequencing of radial glia progeny reveals the diversity of newborn neurons in the adult zebrafish brain, Development, 147 März, 2010, Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon, Glia, 58, 870 Behra, 2012, Transcriptional signature of accessory cells in the lateral line, using the Tnk1bp1:EGFP transgenic zebrafish line, BMC Dev. Biol., 12, 6, 10.1186/1471-213X-12-6 Lush, 2014, Sensory hair cell regeneration in the zebrafish lateral line, Dev. Dyn., 243, 1187, 10.1002/dvdy.24167 Row, 2018, BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity, Elife, 7, 10.7554/eLife.31018 Rabinowitz, 2017, Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish, Proc. Natl. Acad. Sci. USA, 114, E717, 10.1073/pnas.1620755114 Wattrus, 2018, Stem cell safe harbor: the hematopoietic stem cell niche in zebrafish, Blood Adv., 2, 3063, 10.1182/bloodadvances.2018021725 Franco, 2017, Multiple Roles of Pitx2 in Cardiac Development and Disease, J. Cardiovasc. Dev. Dis., 4 Zhang, 2016, The zebrafish fast myosin light chain mylpfa:H2B-GFP transgene is a useful tool for in vivo imaging of myocyte fusion in the vertebrate embryo, Gene Expr. Patterns, 20, 106, 10.1016/j.gep.2016.02.001 Lawson, 2002, In vivo imaging of embryonic vascular development using transgenic zebrafish, Dev. Biol., 248, 307, 10.1006/dbio.2002.0711 Hu, 2019, AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors, Nucleic Acids Res., 47, D33, 10.1093/nar/gky822 Cao, 2019, The single-cell transcriptional landscape of mammalian organogenesis, Nature, 11, 496, 10.1038/s41586-019-0969-x