siRNA Transfection with Calcium Phosphate Nanoparticles Stabilized with PEGylated Chelators

Advanced healthcare materials - Tập 2 Số 1 - Trang 134-144 - 2013
Elisabeth V. Giger1, Bastien Castagner2, Johanna Räikkönen3, Jukka Mönkkönen3, Jean‐Christophe Leroux2
1Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
2Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang‐Pauli‐Str. 10, 8093 Zürich, Switzerland.
3School of Pharmacy, Faculty of Health Sciences and Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland

Tóm tắt

Abstract

Despite the enormous therapeutic potential of siRNAs, their delivery is still problematic due to unfavorable biodistribution profiles and poor intracellular bioavailability. Calcium phosphate co‐precipitate has been used for nearly 40 years for in vitro transfection due to its non‐toxic nature and simplicity of preparation. However, rapid particle growth has largely prevented the translation of this method for in vivo purposes. It has recently been shown that bisphosphonate derivatives can physically stabilize calcium phosphate nanoparticles while still allowing for efficient cell transfection with plasmid DNA. Herein, two novel PEGylated chelating agents (PEG‐alendronate and PEG‐inositolpentakisphosphate) with enhanced stabilizing properties are introduced, and it is demonstrated that the bisphosphonate‐stabilized nanoparticles can efficiently deliver siRNA in vitro. The nanoparticles are mainly taken up by clathrin‐dependent endocytosis, and acidification of the endosomal compartment is required to release the entrapped siRNA into the cytosol. Furthermore, particle uptake enhances the inhibition of the mevalonate pathway by the bisphosphonate in macrophages.

Từ khóa


Tài liệu tham khảo

10.1038/35888

10.1038/nrd2742

Guo J., 2010, Mol. Biosyst., 6, 1143

10.1016/j.jconrel.2010.12.012

10.1021/mp900107v

10.1021/bc800065f

10.1002/adfm.200901139

10.1093/nar/gkn342

10.1208/s12248-010-9210-4

10.1002/jps.22243

10.1016/0042-6822(73)90341-3

10.1016/j.jconrel.2004.03.031

10.1016/j.jconrel.2006.01.004

Zhang M., 2009, Adv. Mater., 21, 1

10.1016/j.jconrel.2009.11.008

10.1016/j.biomaterials.2010.12.057

10.1039/B612699E

10.1016/S0378-5173(02)00452-0

10.1016/j.biomaterials.2009.08.043

10.1016/j.jconrel.2010.11.012

10.1210/edrv.19.1.0325

10.1002/jbm.a.34002

10.1007/s00775-009-0510-z

10.1016/S8756-3282(99)00116-7

10.1359/jbmr.1998.13.4.581

10.1002/jps.22620

10.1016/S0008-6215(00)90816-4

10.1016/S0040-4039(00)91610-1

10.1038/nrm2308

10.1002/smll.200901158

10.1073/pnas.0438041100

10.1038/nnano.2011.58

10.2533/chimia.2009.38

10.1016/0014-4827(90)90181-9

10.1039/b401644k

10.1038/nrm2216

10.1074/jbc.M710046200

10.1038/mt.2009.281

10.1016/j.biomaterials.2010.12.045

10.1023/B:PHAM.0000022411.47059.76

10.1007/s11095-005-8175-y

10.1016/0092-8674(90)90369-P

10.1371/journal.pbio.0030233

10.1016/0092-8674(91)90316-Q

10.1021/nn204448x

10.1021/bc800530v

10.1016/j.jconrel.2011.09.093

10.1083/jcb.108.4.1291

10.1002/bit.20215

10.1016/j.gene.2006.02.028

10.1016/j.jconrel.2008.05.021

10.1016/j.ijpharm.2010.03.012

10.1016/j.biomaterials.2011.01.043

10.1093/nar/gkg385

10.1038/sj.gt.3301056

10.1016/j.ijpharm.2011.04.040

10.1016/j.jconrel.2006.06.024

10.1006/bbrc.1999.1499

10.1038/sj.bjp.0706628

Kunzmann V., 2000, Blood, 96, 384, 10.1182/blood.V96.2.384

Dunford J. E., 2001, J. Pharmacol. Exp. Ther., 296, 235

10.1016/j.bbrc.2011.03.070

10.1016/j.nucmedbio.2010.12.005

10.1039/c0ay00382d

10.1016/j.ijpharm.2010.10.046

10.1016/j.ymthe.2004.11.006

10.1359/jbmr.1997.12.9.1358

10.1006/abio.1998.2750

10.1080/01932699908943811

10.1016/j.bcp.2009.10.003

10.1016/j.jchromb.2009.07.010