sdm: a reproducible and extensible R platform for species distribution modelling

Ecography - Tập 39 Số 4 - Trang 368-375 - 2016
Babak Naimi1,2, Miguel B. Araújo1,3,2,4
1Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, Univ. of Copenhagen, Denmark
2Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY UK
3Dept of Biogeography and Global Change, National Museum of Natural Sciences, CSIC, c/Jose Gutierrez Abascal, ES-28006 Madrid Spain
4InBio‐CIBIO, Univ. of Évora Largo dos Colegiais PT‐7000 Évora Portugal

Tóm tắt

sdm is an object‐oriented, reproducible and extensible, platform for species distribution modelling. It uses individual species and community‐based approaches, enabling ensembles of models to be fitted and evaluated, to project species potential distributions in space and time. It provides a standardized and unified structure for handling species distributions data and modelling techniques, and supports markedly different modelling approaches, including correlative, process‐based (mechanistic), agent‐based, and cellular automata. The object‐oriented design of software is such that scientists can modify existing methods, extend the framework by developing new methods or modelling procedures, and share them to be reproduced by other scientists. sdm can handle spatial and temporal data for single or multiple species and uses high performance computing solutions to speed up modelling and simulations. The framework is implemented in R, providing a flexible and easy‐to‐use GUI interface.

Từ khóa


Tài liệu tham khảo

10.18637/jss.v037.i03

10.1016/j.tree.2006.09.010

10.1890/11-1930.1

10.1111/j.1365-2486.2005.01000.x

10.1111/j.1466-822X.2005.00182.x

10.1016/j.ecolmodel.2006.07.005

Barbet‐Massin M., 2012, Selecting pseudo‐absences for species distribution models: how, where and how many? – Methods Ecol, Evol, 3, 327

10.1111/j.1600-0587.2009.05856.x

Bivand R. S., 2008, Applied spatial data analysis with R

10.1023/A:1010933404324

Breiman L., 1984, Classification and regression trees

Busby J. R., 1991, BIOCLIM – a bioclimate analysis and prediction system

10.1007/BF00051966

10.1214/13-STS452

10.1002/0470055464

10.1007/s10707-009-0090-7

10.1111/j.1600-0587.2009.06196.x

Dormann C. F, 2011, Modelling complex ecological dynamics

10.1111/j.1600-0587.2012.07348.x

10.1016/j.ecolmodel.2004.12.007

10.1111/j.2006.0906-7590.04596.x

10.1016/S0304-3800(02)00327-7

10.1017/S0376892997000088

10.1214/aos/1176347963

10.1214/aos/1013203451

10.1111/j.1365-2486.2011.02605.x

10.1016/j.tree.2004.07.006

10.1016/S0304-3800(00)00354-9

10.1111/j.1600-0587.2010.06416.x

Hastie T., 1990, Generalised additive models

10.1080/01621459.1994.10476866

10.1007/978-0-387-84858-7

10.1177/0309133306071957

Hijmans R. J., 2013, dismo: species distribution modeling with R

10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2

10.1126/science.1231535

10.18637/jss.v028.i05

10.1111/j.1600-0587.2013.00127.x

10.2307/1267205

10.1007/978-1-4899-3242-6

10.1890/07-1929.1

10.1016/j.envsoft.2012.05.012

10.1111/j.1365-2699.2011.02523.x

10.1111/j.1600-0587.2013.00205.x

10.1111/j.1365-2699.2006.01460.x

10.1111/j.1365-2699.2006.01594.x

10.23943/princeton/9780691136868.001.0001

10.1016/j.ecolmodel.2005.03.026

10.1111/j.1365-2699.2006.01466.x

10.1037/h0042519

10.1111/j.1365-2699.2005.01346.x

10.1111/j.2041-210X.2011.00182.x

10.1111/j.1365-2699.2004.01076.x

Soetaert K., 2010, Numerical analysis and applied mathematics, 31

10.1080/136588199241391

10.1046/j.0305-0270.2003.00991.x

10.1111/j.1600-0587.2008.05742.x

VanDerWal J., 2011, SDMTools: species distribution modelling tools: tools for processing data associated with species distribution modelling exercises

10.1007/978-1-4757-2440-0

10.1371/journal.pbio.1001220