s-Elusive codes in Hamming graphs

Daniel R. Hawtin1
1Department of Mathematics, University of Rijeka, 51000 Rijeka, Croatia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Assmus Jr. E.F., Key J.D.: Designs and Their Codes, vol. 103. Cambridge Tracts in Math. Cambridge University Press, Cambridge (1994).

Berger T., Charpin P.: The automorphism group of generalized Reed-Muller codes. Discret. Math. 117(1), 1–17 (1993).

Borges J., Rifà J., Zinoviev V.A.: On completely regular codes. Probl. Inf. Transm. 55(1), 1–45 (2019).

Brouwer A.E.: Private communication (2014). Accepted April 10 2014.

Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs, vol. 18. Springer, Berlin (1989).

Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18(2), 97–122 (1986).

Cameron P.J., van Lint J.H.: Designs, Graphs. Codes and Their Links. Cambridge University Press, Cambridge (1991).

Carlet C., Gaborit P.: Hyper-bent functions and cyclic codes. J. Comb. Theory Ser. A 113(3), 466–482 (2006).

Cvetkovic D., Rowlinson P., Simic S.: Eigenspaces of Graphs. Encyclopedia Math. Appl. Cambridge University Press, Cambridge (2008).

Delsarte P.: An Algebraic Approach to the Association Schemes of Coding Theory. Philips Research reports: Supplements. N. V. Philips’ Gloeilampenfabrieken (1973).

Gillespi N.I.: Neighbour transitivity on codes in Hamming graphs. Ph.D. thesis, The University of Western Australia, Perth, Australia (2011).

Gillespie N.I., Giudici M., Hawtin D.R., Praeger C.E.: Entry-faithful 2-neighbour transitive codes. Des. Codes Cryptogr. 79(3), 549–564 (2016). https://doi.org/10.1007/s10623-015-0069-3.

Gillespie N.I., Hawtin D.R.: Alphabet-almost-simple $$2$$-neighbour-transitive codes. Ars Math. Contemp. 14(2), 345–357 (2017).

Gillespie N.I., Hawtin D.R., Praeger C.E.: The structure of elusive codes in Hamming graphs. Preprint (arXiv:1404.0950v1) (2014).

Gillespie N.I., Hawtin D.R., Praeger C.E.: $$2 $$-Neighbour-transitive codes with small blocks of imprimitivity. Electron. J. Comb. 27(1), 1–16 (2020).

Gillespie N.I., Praeger C.E.: Neighbour transitivity on codes in Hamming graphs. Des. Codes Cryptogr. 67(3), 385–393 (2013). https://doi.org/10.1007/s10623-012-9614-5.

Giudici M., Praeger C.E.: Completely transitive codes in Hamming graphs. Eur. J. Comb. 20(7), 647–662 (1999).

Hawtin D.R., Gillespie N.I., Praeger C.E.: Elusive codes in Hamming graphs. Bull. Aust. Math. Soc. 88, 286–296 (2013). https://doi.org/10.1017/S0004972713000051.

Hawtin D.R., Praeger C.E.: Minimal binary $$2$$-neighbour-transitive codes. J. Comb. Theory Ser. A 171, (2020).

MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes. North-Holland Mathematical Library, North-Holland (1978).

Semakov N.V., Zinoviev V.A., Zaitsev G.V.: Uniformly packed codes. Probl. Inf. Transm. 7(1), 30–39 (1971).

Tokareva N.: Bent Functions: Results and Applications to Cryptography. Elsevier, Amsterdam (2015).