regCNN: identifying Drosophila genome-wide cis-regulatory modules via integrating the local patterns in epigenetic marks and transcription factor binding motifs

Computational and Structural Biotechnology Journal - Tập 20 - Trang 296-308 - 2022
Tzu-Hsien Yang1, Ya-Chiao Yang1, Kai-Chi Tu1
1Department of Information Management, National University of Kaohsiung, Kaohsiung University Rd, 811 Kaohsiung, Taiwan

Tài liệu tham khảo

Yang, 2014, cisMEP: an integrated repository of genomic epigenetic profiles and cis-regulatory modules in drosophila, BMC Syst Biol, 8, S8, 10.1186/1752-0509-8-S4-S8 Yang, 2019, Transcription factor regulatory modules provide the molecular mechanisms for functional redundancy observed among transcription factors in yeast, BMC Bioinform, 20, 1 Davidson, 2006, Gene regulatory networks and the evolution of animal body plans, Science, 311, 796, 10.1126/science.1113832 Poulos, 2015, The search for cis-regulatory driver mutations in cancer genomes, Oncotarget, 6, 32509, 10.18632/oncotarget.5085 Chatterjee, 2016, Enhancer variants synergistically drive dysfunction of a gene regulatory network in Hirschsprung disease, Cell, 167, 355, 10.1016/j.cell.2016.09.005 Schroeder, 2004, Transcriptional control in the segmentation gene network of Drosophila, PLoS Biol, 2, 10.1371/journal.pbio.0020271 Mathelier, 2015, Identification of altered cis-regulatory elements in human disease, Trends Genet, 31, 67, 10.1016/j.tig.2014.12.003 Narlikar, 2009, Identifying regulatory elements in eukaryotic genomes, Briefings Functional Genomics Proteomics, 8, 215, 10.1093/bfgp/elp014 Su, 2010, Assessing computational methods of cis-regulatory module prediction, PLoS Comput Biol, 6, 10.1371/journal.pcbi.1001020 Niu, 2018, Towards a map of cis-regulatory sequences in the human genome, Nucleic Acids Res, 46, 5395, 10.1093/nar/gky338 Sinha, 2007, MORPH: probabilistic alignment combined with hidden markov models of cis-regulatory modules, PLoS Comput Biol, 3, 10.1371/journal.pcbi.0030216 Pierstorff, 2006, Identifying cis-regulatory modules by combining comparative and compositional analysis of DNA, Bioinformatics, 22, 2858, 10.1093/bioinformatics/btl499 Zhou, 2004, CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling, Proc National Acad Sci USA, 101, 12114, 10.1073/pnas.0402858101 Bailey, 2003, Searching for statistically significant regulatory modules, Bioinformatics, 19, ii16, 10.1093/bioinformatics/btg1054 Frith, 2003, Cluster-Buster: Finding dense clusters of motifs in dna sequences, Nucleic Acids Res, 31, 3666, 10.1093/nar/gkg540 Navarro, 2014, CisMiner: genome-wide in-silico cis-regulatory module prediction by fuzzy itemset mining, PLoS One, 9, 10.1371/journal.pone.0108065 Niu, 2014, De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets, BMC Genomics, 15, 1047, 10.1186/1471-2164-15-1047 Blanchette, 2006, Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression, Genome Res, 16, 656, 10.1101/gr.4866006 Kouzarides, 2007, Chromatin modifications and their function, Cell, 128, 693, 10.1016/j.cell.2007.02.005 Shen, 2012, A map of the cis-regulatory sequences in the mouse genome, Nature, 488, 116, 10.1038/nature11243 Nègre, 2011, A cis-regulatory map of the Drosophila genome, Nature, 471, 527, 10.1038/nature09990 Li, 2018, Genome-wide prediction of cis-regulatory regions using supervised deep learning methods, BMC Bioinform, 19, 202, 10.1186/s12859-018-2187-1 Washington, 2011, The modENCODE Data Coordination Center: lessons in harvesting comprehensive experimental details, Database: J Biological Databases Curation, 2011 Chen, 2018, Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals, Gene, 667, 10.1016/j.gene.2018.05.033 Boros, 2012, Histone modification in Drosophila, Briefings Functional Genomics, 11, 319, 10.1093/bfgp/els029 Kharchenko, 2010, Comprehensive analysis of the chromatin landscape in Drosophila melanogaster, Nature, 471, 480, 10.1038/nature09725 Filion, 2010, Systematic protein location mapping reveals five principal chromatin types in drosophila cells, Cell, 143, 212, 10.1016/j.cell.2010.09.009 Chan, 2009, Conservation of core gene expression in vertebrate tissues, J Biol, 8, 33, 10.1186/jbiol130 Ludwig, 2005, Functional evolution of a cis-regulatory module, PLoS Biol, 3, 10.1371/journal.pbio.0030093 Schmidt, 2010, Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding, Science, 1186176 Hardison, 2012, Genomic approaches towards finding cis-regulatory modules in animals, Nat Rev Genet, 13, 469, 10.1038/nrg3242 Yang, 2012, Identifying biologically interpretable transcription factor knockout targets by jointly analyzing the transcription factor knockout microarray and the ChIP-chip data, BMC Syst Biol, 6, 102, 10.1186/1752-0509-6-102 Yang, 2014, YTRP: a repository for yeast transcriptional regulatory pathways, Database: The J Biolog Databases Curation, 10.1093/database/bau014 Rivera, 2019, REDfly: the transcriptional regulatory element database for Drosophila, Nucleic Acids Res, 47, D828, 10.1093/nar/gky957 Thurmond, 2019, FlyBase 2.0: the next generation, Nucleic Acids Res, 47, D759, 10.1093/nar/gky1003 Siepel, 2005, Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes, Genome Res, 15, 1034, 10.1101/gr.3715005 A. Siepel, D. Haussler, Phylogenetic hidden Markov models, in: Statistical Methods in Molecular Evolution, Springer, 2005, pp. 325–351. Navarro Gonzalez, 2021, The UCSC genome browser database: 2021 update, Nucleic Acids Res, 49, D1046, 10.1093/nar/gkaa1070 Fornes, 2020, JASPAR 2020: update of the open-access database of transcription factor binding profiles, Nucleic Acids Res, 48, D87 Jansen, 2011, Nucleosome positioning in Saccharomyces cerevisiae, Microbiol Mol Biol Rev, 75, 301, 10.1128/MMBR.00046-10 Thomas, 2011, Dynamic reprogramming of chromatin accessibility during drosophila embryo development, Genome Biol, 12, R43, 10.1186/gb-2011-12-5-r43 Mavrich, 2008, Nucleosome organization in the Drosophila genome, Nature, 453, 358, 10.1038/nature06929 Langmead, 2019, Scaling read aligners to hundreds of threads on general-purpose processors, Bioinformatics, 35, 421, 10.1093/bioinformatics/bty648 Yang, 2021, Human IRES Atlas: an integrative platform for studying ires-driven translational regulation in humans, Database: J Biological Databases Curation, 10.1093/database/baab025 Bradski, 2008 Azodi, 2020, Opening the black box: Interpretable machine learning for geneticists, Trends Genet, 36, 10.1016/j.tig.2020.03.005 Abu-Mostafa, 2012, Vol. 4 Yang, 2021, An aggregation method to identify the RNA meta-stable secondary structure and its functionally interpretable structure ensemble, IEEE/ACM Trans Comput Biol Bioinf Ghandi, 2014, Enhanced regulatory sequence prediction using gapped k-mer features, PLoS Comput Biol, 10, 10.1371/journal.pcbi.1003711 Johnson, 2005, De novo discovery of a tissue-specific gene regulatory module in a chordate, Genome Res, 15, 1315, 10.1101/gr.4062605 Guo, 2017, A new algorithm for identifying cis-regulatory modules based on hidden Markov model, BioMed Research Iternational, 2017 Lee, 2016, LS-GKM: a new gkm-SVM for large-scale datasets, Bioinformatics, 32, 2196, 10.1093/bioinformatics/btw142 Soutourina, 2018, Transcription regulation by the Mediator complex, Nat Rev Mol Cell Biol, 19, 262, 10.1038/nrm.2017.115 Xi, 2018, Local epigenomic state cannot discriminate interacting and non-interacting enhancer–promoter pairs with high accuracy, PLoS Comput Biol, 14, 10.1371/journal.pcbi.1006625 Cao, 2019, Inflated performance measures in enhancer–promoter interaction-prediction methods, Nat Genet, 51, 1196, 10.1038/s41588-019-0434-7 Lundberg, 2017, A unified approach to interpreting model predictions, in, 4768