regCNN: identifying Drosophila genome-wide cis-regulatory modules via integrating the local patterns in epigenetic marks and transcription factor binding motifs
Tài liệu tham khảo
Yang, 2014, cisMEP: an integrated repository of genomic epigenetic profiles and cis-regulatory modules in drosophila, BMC Syst Biol, 8, S8, 10.1186/1752-0509-8-S4-S8
Yang, 2019, Transcription factor regulatory modules provide the molecular mechanisms for functional redundancy observed among transcription factors in yeast, BMC Bioinform, 20, 1
Davidson, 2006, Gene regulatory networks and the evolution of animal body plans, Science, 311, 796, 10.1126/science.1113832
Poulos, 2015, The search for cis-regulatory driver mutations in cancer genomes, Oncotarget, 6, 32509, 10.18632/oncotarget.5085
Chatterjee, 2016, Enhancer variants synergistically drive dysfunction of a gene regulatory network in Hirschsprung disease, Cell, 167, 355, 10.1016/j.cell.2016.09.005
Schroeder, 2004, Transcriptional control in the segmentation gene network of Drosophila, PLoS Biol, 2, 10.1371/journal.pbio.0020271
Mathelier, 2015, Identification of altered cis-regulatory elements in human disease, Trends Genet, 31, 67, 10.1016/j.tig.2014.12.003
Narlikar, 2009, Identifying regulatory elements in eukaryotic genomes, Briefings Functional Genomics Proteomics, 8, 215, 10.1093/bfgp/elp014
Su, 2010, Assessing computational methods of cis-regulatory module prediction, PLoS Comput Biol, 6, 10.1371/journal.pcbi.1001020
Niu, 2018, Towards a map of cis-regulatory sequences in the human genome, Nucleic Acids Res, 46, 5395, 10.1093/nar/gky338
Sinha, 2007, MORPH: probabilistic alignment combined with hidden markov models of cis-regulatory modules, PLoS Comput Biol, 3, 10.1371/journal.pcbi.0030216
Pierstorff, 2006, Identifying cis-regulatory modules by combining comparative and compositional analysis of DNA, Bioinformatics, 22, 2858, 10.1093/bioinformatics/btl499
Zhou, 2004, CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling, Proc National Acad Sci USA, 101, 12114, 10.1073/pnas.0402858101
Bailey, 2003, Searching for statistically significant regulatory modules, Bioinformatics, 19, ii16, 10.1093/bioinformatics/btg1054
Frith, 2003, Cluster-Buster: Finding dense clusters of motifs in dna sequences, Nucleic Acids Res, 31, 3666, 10.1093/nar/gkg540
Navarro, 2014, CisMiner: genome-wide in-silico cis-regulatory module prediction by fuzzy itemset mining, PLoS One, 9, 10.1371/journal.pone.0108065
Niu, 2014, De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets, BMC Genomics, 15, 1047, 10.1186/1471-2164-15-1047
Blanchette, 2006, Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression, Genome Res, 16, 656, 10.1101/gr.4866006
Kouzarides, 2007, Chromatin modifications and their function, Cell, 128, 693, 10.1016/j.cell.2007.02.005
Shen, 2012, A map of the cis-regulatory sequences in the mouse genome, Nature, 488, 116, 10.1038/nature11243
Nègre, 2011, A cis-regulatory map of the Drosophila genome, Nature, 471, 527, 10.1038/nature09990
Li, 2018, Genome-wide prediction of cis-regulatory regions using supervised deep learning methods, BMC Bioinform, 19, 202, 10.1186/s12859-018-2187-1
Washington, 2011, The modENCODE Data Coordination Center: lessons in harvesting comprehensive experimental details, Database: J Biological Databases Curation, 2011
Chen, 2018, Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals, Gene, 667, 10.1016/j.gene.2018.05.033
Boros, 2012, Histone modification in Drosophila, Briefings Functional Genomics, 11, 319, 10.1093/bfgp/els029
Kharchenko, 2010, Comprehensive analysis of the chromatin landscape in Drosophila melanogaster, Nature, 471, 480, 10.1038/nature09725
Filion, 2010, Systematic protein location mapping reveals five principal chromatin types in drosophila cells, Cell, 143, 212, 10.1016/j.cell.2010.09.009
Chan, 2009, Conservation of core gene expression in vertebrate tissues, J Biol, 8, 33, 10.1186/jbiol130
Ludwig, 2005, Functional evolution of a cis-regulatory module, PLoS Biol, 3, 10.1371/journal.pbio.0030093
Schmidt, 2010, Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding, Science, 1186176
Hardison, 2012, Genomic approaches towards finding cis-regulatory modules in animals, Nat Rev Genet, 13, 469, 10.1038/nrg3242
Yang, 2012, Identifying biologically interpretable transcription factor knockout targets by jointly analyzing the transcription factor knockout microarray and the ChIP-chip data, BMC Syst Biol, 6, 102, 10.1186/1752-0509-6-102
Yang, 2014, YTRP: a repository for yeast transcriptional regulatory pathways, Database: The J Biolog Databases Curation, 10.1093/database/bau014
Rivera, 2019, REDfly: the transcriptional regulatory element database for Drosophila, Nucleic Acids Res, 47, D828, 10.1093/nar/gky957
Thurmond, 2019, FlyBase 2.0: the next generation, Nucleic Acids Res, 47, D759, 10.1093/nar/gky1003
Siepel, 2005, Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes, Genome Res, 15, 1034, 10.1101/gr.3715005
A. Siepel, D. Haussler, Phylogenetic hidden Markov models, in: Statistical Methods in Molecular Evolution, Springer, 2005, pp. 325–351.
Navarro Gonzalez, 2021, The UCSC genome browser database: 2021 update, Nucleic Acids Res, 49, D1046, 10.1093/nar/gkaa1070
Fornes, 2020, JASPAR 2020: update of the open-access database of transcription factor binding profiles, Nucleic Acids Res, 48, D87
Jansen, 2011, Nucleosome positioning in Saccharomyces cerevisiae, Microbiol Mol Biol Rev, 75, 301, 10.1128/MMBR.00046-10
Thomas, 2011, Dynamic reprogramming of chromatin accessibility during drosophila embryo development, Genome Biol, 12, R43, 10.1186/gb-2011-12-5-r43
Mavrich, 2008, Nucleosome organization in the Drosophila genome, Nature, 453, 358, 10.1038/nature06929
Langmead, 2019, Scaling read aligners to hundreds of threads on general-purpose processors, Bioinformatics, 35, 421, 10.1093/bioinformatics/bty648
Yang, 2021, Human IRES Atlas: an integrative platform for studying ires-driven translational regulation in humans, Database: J Biological Databases Curation, 10.1093/database/baab025
Bradski, 2008
Azodi, 2020, Opening the black box: Interpretable machine learning for geneticists, Trends Genet, 36, 10.1016/j.tig.2020.03.005
Abu-Mostafa, 2012, Vol. 4
Yang, 2021, An aggregation method to identify the RNA meta-stable secondary structure and its functionally interpretable structure ensemble, IEEE/ACM Trans Comput Biol Bioinf
Ghandi, 2014, Enhanced regulatory sequence prediction using gapped k-mer features, PLoS Comput Biol, 10, 10.1371/journal.pcbi.1003711
Johnson, 2005, De novo discovery of a tissue-specific gene regulatory module in a chordate, Genome Res, 15, 1315, 10.1101/gr.4062605
Guo, 2017, A new algorithm for identifying cis-regulatory modules based on hidden Markov model, BioMed Research Iternational, 2017
Lee, 2016, LS-GKM: a new gkm-SVM for large-scale datasets, Bioinformatics, 32, 2196, 10.1093/bioinformatics/btw142
Soutourina, 2018, Transcription regulation by the Mediator complex, Nat Rev Mol Cell Biol, 19, 262, 10.1038/nrm.2017.115
Xi, 2018, Local epigenomic state cannot discriminate interacting and non-interacting enhancer–promoter pairs with high accuracy, PLoS Comput Biol, 14, 10.1371/journal.pcbi.1006625
Cao, 2019, Inflated performance measures in enhancer–promoter interaction-prediction methods, Nat Genet, 51, 1196, 10.1038/s41588-019-0434-7
Lundberg, 2017, A unified approach to interpreting model predictions, in, 4768