pyLIMA: An Open-source Package for Microlensing Modeling. I. Presentation of the Software and Analysis of Single-lens Models

Astronomical Journal - Tập 154 Số 5 - Trang 203 - 2017
E. Bachelet1, M. Norbury1, V. Bozza2,3, R. A. Street1
1Las Cumbres Observatory, 6740 Cortona Drive, Suite 102, Goleta, CA 93117, USA
2Dipartimento di Fisica "E.R. Caianiello", Università di Salerno, Via Giovanni Paolo II, 132, I-84084, Fisciano, SA, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli, Italy

Tóm tắt

Abstract Microlensing is a unique tool, capable of detecting the “cold” planets between ∼1 and 10 au from their host stars and even unbound “free-floating” planets. This regime has been poorly sampled to date owing to the limitations of alternative planet-finding methods, but a watershed in discoveries is anticipated in the near future thanks to the planned microlensing surveys of WFIRST-AFTA and Euclid's Extended Mission. Of the many challenges inherent in these missions, the modeling of microlensing events will be of primary importance, yet it is often time-consuming, complex, and perceived as a daunting barrier to participation in the field. The large scale of future survey data products will require thorough but efficient modeling software, but, unlike other areas of exoplanet research, microlensing currently lacks a publicly available, well-documented package to conduct this type of analysis. We present version 1.0 of the python Lightcurve Identification and Microlensing Analysis (pyLIMA). This software is written in Python and uses existing packages as much as possible to make it widely accessible. In this paper, we describe the overall architecture of the software and the core modules for modeling single-lens events. To verify the performance of this software, we use it to model both real data sets from events published in the literature and generated test data produced using pyLIMA's simulation module. The results demonstrate that pyLIMA is an efficient tool for microlensing modeling. We will expand pyLIMA to consider more complex phenomena in the following papers.

Từ khóa


Tài liệu tham khảo

Albrow, 2004, ApJ, 607, 821, 10.1086/383565

Albrow, 2000, ApJ, 535, 176, 10.1086/308842

Alcock, 2000, ApJ, 541, 734, 10.1086/309484

An, 2002, ApJ, 572, 521, 10.1086/340191

Astropy Collaboration, 2013, A&A, 558, A33, 10.1051/0004-6361/201322068

Bachelet, 2015, ApJ, 812, 136, 10.1088/0004-637X/812/2/136

Batalha, 2013, ApJS, 204, 24, 10.1088/0067-0049/204/2/24

Bond, 2001, MNRAS, 327, 868, 10.1046/j.1365-8711.2001.04776.x

Borsato, 2014, A&A, 571, A38, 10.1051/0004-6361/201424080

Bozza, 2010, MNRAS, 408, 2188, 10.1111/j.1365-2966.2010.17265.x

Cassan, 2006, A&A, 460, 277, 10.1051/0004-6361:20054414

Cassan, 2012, Natur, 481, 167, 10.1038/nature10684

Plato Mission Consortium, 2011, JPhCS, 271, 10.1088/1742-6596/271/1/012084

Clanton, 2014, ApJ, 791, 91, 10.1088/0004-637X/791/2/91

Claret, 2011, A&A, 529, A75, 10.1051/0004-6361/201116451

Coughlin, 2015

Díaz, 2014, MNRAS, 441, 983, 10.1093/mnras/stu601

Dominik, 2009, MNRAS, 393, 816, 10.1111/j.1365-2966.2008.14276.x

Dominik, 2008, AN, 329, 248, 10.1002/asna.200710928

Dong, 2006, ApJ, 642, 842, 10.1086/501224

Dong, 2009, ApJ, 698, 1826, 10.1088/0004-637X/698/2/1826

Dumusque, 2016, A&A, 593, A5, 10.1051/0004-6361/201628672

Dumusque, 2017, A&A, 598, A133, 10.1051/0004-6361/201628671

Foreman-Mackey, 2013, PASP, 125, 306, 10.1086/670067

Gaudi, 2012, ARA&A, 50, 411, 10.1146/annurev-astro-081811-125518

Gould, 2000, ApJ, 542, 785, 10.1086/317037

Gould, 2004, ApJ, 606, 319, 10.1086/382782

Griest, 1998, ApJ, 500, 37, 10.1086/305729

Han, 2016, ApJ, 825, 8, 10.3847/0004-637X/825/1/8

Hunter, 2007, CSE, 9, 90, 10.1109/MCSE.2007.55

Janczak, 2010, ApJ, 711, 731, 10.1088/0004-637X/711/2/731

Jones, 2001, SciPy: Open Source Scientific Tools for Python

LSST Science Collaboration, 2009

Laureijs, 2011

Lee, 2009, ApJ, 695, 200, 10.1088/0004-637X/695/1/200

Levenberg, 1944, QApMa, 2, 164, 10.1090/qam/10666

Ma, 2016

Marquardt, 1963, SIAM Journal on Applied Mathematics, 11, 431, 10.1137/0111030

Milne, 1921, MNRAS, 81, 361, 10.1093/mnras/81.5.361

Mogavero, 2016, A&A, 585, A62, 10.1051/0004-6361/201527380

Moutou, 2005, A&A, 437, 355, 10.1051/0004-6361:20042334

Paczyński, 1986, ApJ, 304, 1, 10.1086/164140

Ricker, 2014, 914320

Ricker, 2015, JATIS, 1, 10.1117/1.JATIS.1.1.014003

Skowron, 2011, ApJ, 738, 87, 10.1088/0004-637X/738/1/87

Spergel, 2015

Storn, 1997, J. of Global Optimization, 11, 341, 10.1023/A:1008202821328

Sumi, 2011, Natur, 473, 349, 10.1038/nature10092

Sumi, 2013, ApJ, 778, 150, 10.1088/0004-637X/778/2/150

Szymanski, 2005, AcA, 55, 43

Thomas, 2006, ApJ, 640, 299, 10.1086/500101

Tsapras, 2003, MNRAS, 343, 1131, 10.1046/j.1365-8711.2003.06720.x

Tsapras, 2016, MNRAS, 457, 1320, 10.1093/mnras/stw023

Udalski, 2003, AcA, 53, 291

Udalski, 1994, AcA, 44, 227

Udalski, 2000, AcA, 50, 1

Udalski, 2002, AcA, 52, 1

van der Walt, 2011, CSE, 13, 22, 10.1109/MCSE.2011.37

Vesterstrom, 2004, 19801987

Wambsganss, 1992, A&A, 258, 591

Witt, 1994, ApJ, 430, 505, 10.1086/174426

Wozniak, 2001, AcA, 51, 175

Yoo, 2004, ApJ, 603, 139, 10.1086/381241