phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rossmann MG (1972) The molecular replacement method. Godon & Breach, New York
Evans P, McCoy A (2008) An introduction to molecular replacement. Acta Cryst D64:1–10
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242
Chen YW, Dodson EJ, Kleywegt GJ (2000) Does NMR mean “not for molecular replacement”? using NMR-based search models to solve protein crystal structures. Structure 8:213–220
Bunkoczi G, Read RJ (2010) Improvement of molecular-replacement models with Sculptor. Acta Cryst D67:303–312
Mao B, Guan R, Montelione GT (2011) Improved technologies now routinely provide protein NMR structures useful for molecular replacement. Structure 19:757–766
Schwarzenbacher R, Godzik A, Grzechnik SK, Jaroszewski L (2004) The importance of alignment accuracy for molecular replacement. Acta Cryst D 60:1229–1236
Keegan RM, Long F, Fazio VJ, Winn MD, Murshudov GN, Vagin AA (2011) Evaluating the solution from MrBUMP and BALBES. Acta Cryst D67:313–323
Read RJ (2001) Pushing the boundaries of molecular replacement with maximum likelihood. Acta Cryst D 57:1373–1382
Delarue M (2008) Dealing with structural variability in molecular replacement and crystallographic refinement through normal-mode analysis. Acta Cryst D64:40–48
Kidera A, Go N (1992) Normal mode refinement—crystallographic refinement of protein dynamic structure. 1. Theory and test by simulated diffraction data. J Mol Biol 225:457–475
Long F, Vagin A, Young P, Murshudov GN (2008) BALBES: a molecular replacement pipeline. Acta Cryst D64:125–132
Stokes-Rees I, Sliz P (2010) Protein structure determination by exhaustive search of Protein Data Bank derived databases. Proc Natl Acad Sci USA 107:21476–21481
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Cryst 40:658–674
Roversi P, Blanc E, Vonrhein C, Evans G, Bricogne G (2000) Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Cryst D56:1316–1323
Terwilliger TC (2004) Using prime-and-switch phasing to reduce model bias in molecular replacement. Acta Cryst D60:2144–2149
Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3:1171–1179
Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nature Struct Biol 6:458–463
Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung LW, Read RJ, Adams PD (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Cryst D 64:61–69
Baker ML, Ju T, Chiu W (2007) Identification of secondary structure elements in intermediate resolution density maps. Structure 15:7–19
Cowtan K (2006) The Buccaneer software for automated model building. Acta Cryst D62:1002–1011
DiMaio F, Kondrashov DA, Bitto E, Soni A, Bingman CA, Phillips GN Jr, Shavlik JW (2007) Bioinformatics 23:2851–2858
Ioerger TR, Sacchettini JC (2003) TEXTAL system: artificial intelligence techniques for automated protein model building. Methods Enzymol 374:244–270
Levitt DG (2001) A new software routine that automates the fitting of protein X-ray crystallographic electron density maps. Acta Cryst D57:1013–1019
Oldfield TJ (2002) Pattern-recognition methods to identify secondary structure within X-ray crystallographic electron-density maps. Acta Cryst D58:487–493
Oldfield TJ (2003) Automated tracing of electron density maps of proteins. Acta Cryst D59:483–491
Terwilliger TC (2010) Rapid model-building of alpha-helices in electron density maps. Acta Cryst D66:268–275
DiMaio F, Terwilliger TC, Read RJ, Wlodawer A, Oberdorfer G, Wagner U, Valkov E, Alon A, Fass D, Axelrod HL, Das D, Vorobiev SM, Iwai H, Pokkuluri PR, Baker D (2011) Improving molecular replacement by density and energy guided protein structure optimization. Nature 473:540–543
Qian B, Raman S, Das R, Bradley P, McCoy AJ, Read RJ, Baker D (2007) High resolution structure prediction and the crystallographic phase problem. Nature 450:259–264
Ramelot TA, Raman S, Kuzin AP, Xiao R, Ma LC, Acton TB, Hunt JF, Montelione GT, Baker D, Kennedy MA (2009) Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study. Proteins 75:147–167
Das R, Baker D (2009) Prospects for de novo phasing with de novo protein models. Acta Cryst D65:169–175
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst D66:213–221
Chivian D, Kim DE, Malmstrom L, Bradley P, Robertson T, Murphy P, Strauss CEM, Bonneau R, Rohl CA, Baker D (2003) Automated prediction of CASP-5 structures using the Robetta server. Proteins 53(Suppl 6):524–533
Afonine PV, Grosse-Kunstleve RW, Adams PD (2005) The Phenix refinement framework. CCP4 newsl. 42, contribution 8
Terwilliger TC (2002) Statistical density modification with non-crystallographic symmetry. Acta Cryst D58:2082–2086
DiMaio F, Tyka MD, Baker ML, Chiu W, Baker D (2009) Refinement of protein structures into low-resolution density maps using Rosetta. J Mol Biol 392:181–190
Lyskowski A, Oeemig JS, Jaakonen A, Rommi K, DiMaio F, Zhou D, Kajander T, Baker D, Wlodawer A, Goldman A, Iwaï H (2011) Cloning, expression, purification, crystallization and preliminary X-ray diffraction data of the Pyrococcus horikoshii RadA intein. Acta Cryst F67:623–626
Li M, DiMaio F, Zhou D, Gustchina A, Lubkowski J, Dauter Z, Baker D, Wlodawer A (2011) Crystal structure of XMRV protease differs from the structures of other retropepsins. Nat Struct Mol Biol 18:227–229
Kovalevsky AY, Liu F, Leshchenko S, Ghosh AK, Louis JM, Harrison RW, Weber IT (2006) Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114. J Mol Biol 363:161–173
Schröder G, Levitt M, Brünger AT (2010) Super-resolution biomolecular crystallography with low-resolution data. Nature 464:1218–1222