Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự điều chỉnh pH của môi trường bởi Stagonosporopsis cucurbitacearum, một tác nhân gây bệnh quan trọng gây thối trái trong họ Bầu bí
Tóm tắt
Họ Bầu bí (Cucurbitaceae) là một nhóm thực vật có sự đa dạng di truyền cao, chứa đựng nhiều loại cây trồng quan trọng ở nhiều nơi trên thế giới như dưa leo, bí ngô và dưa. Trong những thập kỷ qua, bệnh thối trái do Stagonosporopsis spp. gây ra đã trở thành một bệnh nghiêm trọng ở cả cây trồng ngoài đồng ruộng lẫn trong nhà kính. Sự thiệt hại trong năng suất do Stagonosporopsis có thể đạt đỉnh theo mùa lên tới 30%. Mặc dù có tầm quan trọng về kinh tế, thông tin về đặc điểm sinh trưởng của Stagonosporopsis cucurbitacearum còn khá hạn chế. Các nghiên cứu in vitro của chúng tôi với các môi trường khác nhau chỉ ra rằng tốc độ phát triển tối ưu của nấm nằm trong khoảng pH 5 đến pH 6. Không phụ thuộc vào nguồn carbon (sucrose, glucose, dextrose, fructose), sự kiềm hóa từ 1 đến 3, 5 đơn vị pH đã được quan sát thấy dưới cả điều kiện thiếu hụt và thừa carbon. Việc điều chỉnh pH quan sát được không phải lúc nào cũng liên quan đến môi trường tăng trưởng thuận lợi hơn. Yếu tố chính ảnh hưởng đến cả khả năng điều chỉnh pH và sự phát triển được chứng minh là nguồn nitơ. Cung cấp nitrat, ammoni hoặc sự kết hợp của cả hai, pH môi trường lần lượt tăng, giảm hoặc vẫn ổn định. Ngoài tác động nâng cao pH, việc cung cấp nitrat cũng kích thích sự phát triển, trong khi sự phát triển trên môi trường có chứa ammoni bị ảnh hưởng nghiêm trọng. Nghiên cứu này nhấn mạnh tầm quan trọng của nguồn nitơ trong sự phát triển và điều tiết pH môi trường bởi nấm và bổ sung thêm hiểu biết của chúng tôi về khả năng gây bệnh của S. cucurbitacearum.
Từ khóa
#Cucurbitaceae #Stagonosporopsis cucurbitacearum #bệnh thối trái #pH #nguồn nitơ #sinh trưởng của nấm.Tài liệu tham khảo
Alkan, N., Meng, X., Friedlander, G., Reuveni, E., Sukno, S., Sherman, A., Thon, M., Fluhr, R., & Prusky, D. (2013). Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis. Molecular Plant Microbe Interactions, 26, 1345–1358. https://doi.org/10.1094/MPMI-03-13-0080-R.
Arima, K., Sakamoto, T., Araki, C., & Tamura, G. (1972). Production of extracellular L-asparaginases by microorganisms. Agricultural and Biological Chemistry, 36, 356–361.
Bi, F., Barad, S., Ment, D., Luria, N., Dubey, A., Casado, V., Glam, N., Mínguez, J. D., Espeso, E. A., Fluhr, R., & Prusky, D. (2016). Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. Molecular Plant Pathology, 17(8), 1178–1195. https://doi.org/10.1111/mmp.12355.
Cooke, R. C., & Whipps, J. M. (1993). Ecophysiology of Fungi. Oxford: Blackwell Scientific Publications.
Corlett, M. (1981). A taxonomic survey of some species of Didymella bryoniae on cucumber. ADAS Plant Pathologists Technical Conference, PP/T/1082.
De Neergaard, E. (1989). Histological investigation of flower parts of cucumber infected by Didymella bryoniae. Canadian Journal of Plant Pathology, 11, 28–38.
Eshel, D., Miyara, I., Ailing, T., Dinoor, A., & Prusky, D. (2002). pH regulates endoglucanase expression and virulence of Alternaria alternata in persimmon fruits. Molecular Plant Microbe Interactions, 15, 774–779. https://doi.org/10.1094/MPMI.2002.15.8.774.
Fernandes, T. R., Segorbe, D., Prusky, D., & Di Pietro, A. (2017). How alkalization drives fungal pathogenicity. PLoS Pathogens, 13(11), e1006621. https://doi.org/10.1371/journal.ppat.1006621.
Frans, M., Aerts, R., Van Laethem, S., & Ceusters, J. (2017). Environmental effects on growth and sporulation of Fusarium spp. causing internal fruit rot in bel pepper. European Journal of Plant Pathology, 149(4), 875–883.
Gorfer, M., Blumhoff, M., Klaubauf, S., Urban, A., Inselsbacher, E., Bandian, D., Mitter, B., Sessitsch, A., Wanek, W., & Strauss, J. (2011). Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil. ISME Journal, 5, 1771–1783. https://doi.org/10.1038/ismej.2011.53.
Griffin, D. H. (1994). Fungal physiology (2nd ed., p. 458). New York: Wiley.
Handley, L. W., Pharr, D. M., & McFeeters, R. F. (1983). Carbohydrate changes during maturation of cucumber fruit – Implications for sugar metabolism and transport. Plant Physiology, 72, 498–502.
He, X. M., & Suzuki, A. (2003). Effect of nitrogen resources and pH on growth and fruit body formation of Coprinopsis phlyctidospora. Fungal Diversity, 12, 35–44.
Hu, L. P., Meng, F. Z., Wang, S. H., Sui, X. L., Li, W., Wei, Y. X., Sun, J. L., & Zang, Z. X. (2009). Changes in carbohydrate levels and their metabolic enzymes in leaves, phloem sap and mesocarp during cucumber (Cucumis sativus L.) fruit development. Scientia Horticulturae, 121, 131–137.
Hulme, A. C. (1971). The biochemistry of fruits and their products. London: Academic Press.
Jongbloed, R. H., Borst, G. W., & Pauwels, F. H. (1990). Effect of ammonium and pH on growth of some ectomycorrhizal fungi in vitro. Acta Botanica Neerlandica, 39, 349–358.
Jurick, W. M., Vico, I., Gaskins, V. L., Peter, K. A., Park, E., Janisiewicz, W. J., & Conwaya, W. S. (2012). Carbon, nitrogen and pH regulate the production and activity of a polygalacturonase isozyme produced by Penicillium expansum. Archives of Phytopathology and Plant Protection, 45, 1101–1114.
Keinath, A. P. (2000). Effect of protectant fungicide application schedules on gummy stem blight epidemics and marketable yield of watermelon. Plant Disease, 84, 254–260.
Keinath, A. P. (2011). From native plant in Central Europe to cultivated crops worldwide: The emergence of Didymella bryoniae as a cucurbit pathogen. HortScience, 4, 532–535.
Keller, G. (1996). Utilization of inorganic and organic nitrogen sources by high- subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycological Research, 100(8), 989–998.
Leslie, J. F., & Summerell, B. A. (2006). The Fusarium Laboratory Manual. Iowa: Blackwell Publishing Ltd.
Lewis, C. M., & Fincham, J. R. S. (1970). Regulation of nitrate reductase in the Basidiomycete Ustilago maydis. Journal of Bacteriology, 103, 55–61.
Manteau, S., Abouna, S., Lambert, B., & Legendre, L. (2003). Differential regulation by ambient pH of putative virulence factors secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiology Ecology, 43, 359–366. https://doi.org/10.1111/j.1574-6941.2003.tb01076.x.
Marschner, H., Kirkby, E. A., & Cakmak, I. (1996). Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal of Experimantal Botany, 47, 1255–1263.
Marzluf, G. A. (1997). Genetic regulation of nitrogen metabolism in the fungi. Microbiology and Molecular Biology Reviews, 61, 17–32.
McPherson, G. M., O’Neill, T., Kennedy, R., & Townsend, J. (2014). Cucumber – Improving control of gummy stem blight caused by Mycosphaerella melonis. Agriculture and Horticulture Development Board, p. 4.
Ment, D., Alkan, N., Luria, N., Bi, F. C., Reuveni, E., Fluhrn, R., & Prusky, D. (2015). A role of AREB in the regulation of PACC-dependent acid-expressed genes and pathogenicity of Colletotrichum gloeosporioides. Molecular Plant Microbe Interactions, 28, 154–166.
Miller, S.A., Roe, R.C., Riedel, R.M. (2010). Gummy stem blight and black rot of cucurbits. Ohio State University Extension Fact Sheet 3126.
Moore-Landecker, E. (1996). Fundamentals of the Fungi (4th ed.). Upper Saddle River: Prentice Hall See Chapter 10: Growth.
Morton, A. G., & MacMillan, A. (1954). The assimilation of nitrogen from ammonium salts and nitrate by fungi. Journal of Experimental Botany, 5, 232–252.
Nicholas, D. J. D. (1965). Utilization of inorganic nitrogen compounds and amino acids by fungi. In G. C. Ainsworth & A. S. Sussman (Eds.), The fungi: an advanced treatise (Vol. 1, pp. 349–376). New York: Academic Press.
Pateman, J. A., & Cove, D. J. (1967). Regulation of nitrate reduction in Aspergillus nidulans. Nature, London, 215, 1234–1240.
Pfanmüller, A., Boysen, J. M., & Tudzynski, B. (2017). Nitrate assimilation in Fusarium fujikuroi is controlled by multiple levels of regulation. Frontiers in Microbiology, 8, 381. https://doi.org/10.3389/fmicb.2017.00381.
Prusky, D. (1996). Pathogen quiescence in postharvest diseases. Annual Review of Phytopathology, 34, 413–434.
Prusky, D., Mcevoy, J. L., Leverentz, B., & Conway, W. S. (2001). Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence. Molecular Plant Microbe Interactions, 14, 1105–1113. https://doi.org/10.1094/MPMI.2001.14.9.1105.
Prusky, D., Mcevoy, J. L., Saftner, R., Conway, W. S., & Jones, R. (2004). Relationship between host acidification and virulence of Penicillium spp. on apple and citrus fruit. Phytopathology, 94, 44–51. https://doi.org/10.1094/PHYTO.2004.94.1.44.
Prusky, D., Alkan, N., Mengiste, T., & Fluhr, R. (2013). Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annual Review of Phytopathology, 51, 155–176.
Prusky, D., Bi, F., Moral, J., & Barad, S. (2016). How does host carbon concentration modulate the lifestyle of postharvest pathogens during colonization? Frontiers in Plant Science, 7(1306). https://doi.org/10.3389/fpls.2016.01306.
Prusy, D., & Yakobi, N. (2003). Review – Pathogenic fungi: Leading or led by ambient pH? Molecular Plant Pathology, 4(6), 509–516. https://doi.org/10.1046/J.1364-3703.2003.00196.X.
Pusky, D., & Lichter, A. (2008). Mechanisms modulating fungal attack in post-harvest pathogen interactions and their control. European Journal of Plant Pathology, 121, 281–289.
Robinson, R. W., & Decker-Walters, D. S. (Eds.). (1997). Cucurbits (p. 226). New York: CAB International.
Ruiz, J. M., & Romero, L. (1999). Cucumber yield and nitrogen metabolism in response to nitrogen supply. Scientia Horticulturae, 82, 309–316.
Schaffer, A. A., Aloni, B. A., & Fogelman, E. (1987). Sucrose metabolism and accumulation in developing fruit of Cucumis. Phytochemistry, 26, 1883–1887.
Schinko, T., Gallmetzer, A., Amillis, S., & Strauss, J. (2013). Pseudo-constitutivity of nitrate-responsive genes in nitrate reductase mutants. Fungal Genetics and Biology, 54, 34–41. https://doi.org/10.1016/j.fgb.2013.02.003.
Siverio, J. M. (2002). Assimilation of nitrate by yeasts. FEMS Microbiology Reviews, 26, 277–284. https://doi.org/10.1111/j.1574-6976.2002.tb00615.x.
Snoeijers, S., Pérez‐García, A., Joosten, M. A. J., & De Wit, P. G. M. (2000). The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. European Journal of Plant Pathology, 106, 493–506.
Song, M., Xu, X., Hu, Q., Tian, Y., Ouyang, H., & Zhou, C. (2007). Interactions of plant species mediated plant competition for inorganic nitrogen with soil microorganisms in an alpine meadow. Plant and Soil, 297, 127–137. https://doi.org/10.1007/s11104-007-9326-1.
Steward, J. E., Turner, A. N., & Brewer, M. T. (2015). Evolutionary history and variation in host range of three Stagonosporopsis species causing gummy stem blight of cucurbits. Fungal Biology, 119, 370–382.
Tavernier, V., Cadiou, S., Pageau, K., Lauge, R., Reisdorf‐Cren, M., Langin, T., & Masclaux‐Daubresse, C. (2007). The plant nitrogen mobilization promoted by Colletotrichum lindemuthianumin Phaseolus leaves depends on fungus pathogenicity. Journal of Experimental Botany, 58, 3351–3360.
Tsay, J., Tzen, S., & Tung, B. (1990). Enhancement of sporulation of Didymella bryoniae by near-ultraviolet irradiation. Plant Protection Bulletin, 32, 229–232.
Tudzynski, B. (2014). Nitrogen regulation of fungal secondary metabolism in fungi. Frontiers in Microbiology, 5, 656. https://doi.org/10.3389/fmicb.2014.00656.
Van Laethem, S., Frans, M., Aerts, R., & Ceusters, J. (2019). Effects of environmental conditions on growth of Stagonosporopsis cucurbitacearum causing internal fruit rot in cucurbits. Acta Horticulturae, accepted.
Van Steekelenburg, N. A. M. (1982). Factors influencing external fruit rot of cucumber caused by Didymella bryoniae. Netherlands Journal of Plant Pathology, 88, 47–56.
Van Steekelenburg, N.A.M. (1986). Didymella bryoniae on glasshouse cucumbers. PhD thesis, Wageningen University, Wageningen.
Wiemann, P., & Tudzynski, B. (2013). The nitrogen regulation network and its impact on secondary metabolism and pathogenicity. In D. W. Brown & R. H. Proctor (Eds.), Fusarium: Genomics, Molecular and Cellular Biology (pp. 111–142). Norwich: Caister Academic Press.
Wong, K. H., Hynes, M. J., & Davis, M. A. (2008). Recent advances in nitrogen regulation: A comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryotic Cell, 7, 917–925. https://doi.org/10.1128/EC.00076-08.
Yamanaka, T. (1999). Utilization of inorganic and organic nitrogen in pure cultures by saprotrophic and ectomycorrhizal fungi producing sporophores on urea-treated forest floor. Mycological Research, 103, 811–816.