p27Kip1 Directly Represses Sox2 during Embryonic Stem Cell Differentiation

Cell Stem Cell - Tập 11 - Trang 845-852 - 2012
Han Li1, Manuel Collado1, Aranzazu Villasante1, Ander Matheu2, Cian J. Lynch1, Marta Cañamero3, Karine Rizzoti2, Carmen Carneiro4, Gloria Martínez4, Anxo Vidal4, Robin Lovell-Badge2, Manuel Serrano1
1Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, E28029, Spain
2Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
3Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, E28029, Spain
4Departamento de Fisioloxia, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, E15782, Spain

Tài liệu tham khảo

Aleem, 2005, Cdc2-cyclin E complexes regulate the G1/S phase transition, Nat. Cell Biol., 7, 831, 10.1038/ncb1284 Avilion, 2003, Multipotent cell lineages in early mouse development depend on SOX2 function, Genes Dev., 17, 126, 10.1101/gad.224503 Bahrami, 2005, The CDK inhibitor p27 enhances neural differentiation in pluripotent NTERA2 human EC cells, but does not permit differentiation of 2102Ep nullipotent human EC cells, Mech. Dev., 122, 1034, 10.1016/j.mod.2005.04.011 Banito, 2009, Senescence impairs successful reprogramming to pluripotent stem cells, Genes Dev., 23, 2134, 10.1101/gad.1811609 Besson, 2008, CDK inhibitors: cell cycle regulators and beyond, Dev. Cell, 14, 159, 10.1016/j.devcel.2008.01.013 Bryja, 2005, Abnormal development of mouse embryoid bodies lacking p27Kip1 cell cycle regulator, Stem Cells, 23, 965, 10.1634/stemcells.2004-0174 Chu, 2008, The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy, Nat. Rev. Cancer, 8, 253, 10.1038/nrc2347 Coats, 1999, A new pathway for mitogen-dependent cdk2 regulation uncovered in p27(Kip1)-deficient cells, Curr. Biol., 9, 163, 10.1016/S0960-9822(99)80086-4 D'Amour, 2003, Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells, Proc. Natl. Acad. Sci. USA, 100, 11866, 10.1073/pnas.1834200100 Dannenberg, 2005, mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival, Genes Dev., 19, 1581, 10.1101/gad.1286905 Eminli, 2008, Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression, Stem Cells, 26, 2467, 10.1634/stemcells.2008-0317 Engelen, 2011, Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes, Nat. Genet., 43, 607, 10.1038/ng.825 Fantes, 2003, Mutations in SOX2 cause anophthalmia, Nat. Genet., 33, 461, 10.1038/ng1120 Fauquier, 2008, SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland, Proc. Natl. Acad. Sci. USA, 105, 2907, 10.1073/pnas.0707886105 Fero, 1996, A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice, Cell, 85, 733, 10.1016/S0092-8674(00)81239-8 Garcia-Lavandeira, 2009, A GRFa2/Prop1/stem (GPS) cell niche in the pituitary, PLoS ONE, 4, e4815, 10.1371/journal.pone.0004815 Gleiberman, 2008, Genetic approaches identify adult pituitary stem cells, Proc. Natl. Acad. Sci. USA, 105, 6332, 10.1073/pnas.0801644105 Hong, 2009, Suppression of induced pluripotent stem cell generation by the p53-p21 pathway, Nature, 460, 1132, 10.1038/nature08235 Kawamura, 2009, Linking the p53 tumour suppressor pathway to somatic cell reprogramming, Nature, 460, 1140, 10.1038/nature08311 Kelberman, 2006, Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans, J. Clin. Invest., 116, 2442 Kiyokawa, 1996, Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1), Cell, 85, 721, 10.1016/S0092-8674(00)81238-6 Li, 2009, The Ink4/Arf locus is a barrier for iPS cell reprogramming, Nature, 460, 1136, 10.1038/nature08290 Marinoni, 2011, p27kip1: a new multiple endocrine neoplasia gene?, Neuroendocrinology, 93, 19, 10.1159/000320366 Marión, 2009, A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity, Nature, 460, 1149, 10.1038/nature08287 Martín, 2005, Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1), Cancer Cell, 7, 591, 10.1016/j.ccr.2005.05.006 Masui, 2007, Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells, Nat. Cell Biol., 9, 625, 10.1038/ncb1589 Nakayama, 1996, Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors, Cell, 85, 707, 10.1016/S0092-8674(00)81237-4 Pippa, 2012, p27(Kip1) represses transcription by direct interaction with p130/E2F4 at the promoters of target genes, Oncogene, 31, 4207, 10.1038/onc.2011.582 Savatier, 1996, Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells, Oncogene, 12, 309 Sikorska, 2008, Epigenetic modifications of SOX2 enhancers, SRR1 and SRR2, correlate with in vitro neural differentiation, J. Neurosci. Res., 86, 1680, 10.1002/jnr.21635 Takahashi, 2006, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663, 10.1016/j.cell.2006.07.024 Taranova, 2006, SOX2 is a dose-dependent regulator of retinal neural progenitor competence, Genes Dev., 20, 1187, 10.1101/gad.1407906 Tomioka, 2002, Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex, Nucleic Acids Res., 30, 3202, 10.1093/nar/gkf435 Utikal, 2009, Immortalization eliminates a roadblock during cellular reprogramming into iPS cells, Nature, 460, 1145, 10.1038/nature08285 Vandeva, 2010, Familial pituitary adenomas, Ann. Endocrinol. (Paris), 71, 479, 10.1016/j.ando.2010.08.005 Williamson, 2006, Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome, Hum. Mol. Genet., 15, 1413, 10.1093/hmg/ddl064 Zhao, 2008, Two supporting factors greatly improve the efficiency of human iPSC generation, Cell Stem Cell, 3, 475, 10.1016/j.stem.2008.10.002