p-adic valuation of exponential sums associated to trinomials and some consequences

Pleiades Publishing Ltd - Tập 9 - Trang 257-266 - 2017
Francis N. Castro1, Raúl Figueroa1
1Department of Mathematics, University of Puerto Rico, San Juan, USA

Tóm tắt

In this paper, we compute the p-adic valuation of exponential sums associated to trinomials $$F\left( X \right) = a{X^{{d_1}}} + b{X^{{d_2}}} + c{X^{{d_3}}}$$ over Fp. As a byproduct of our results, we obtain restrictions for permutation polynomials of type $$a{X^{{d_1}}} + b{X^{{d_2}}} + c{X^{{d_3}}}$$ over Fp.

Tài liệu tham khảo

A. Adolphson and S. Sperber, “p-Adic estimates for exponential sums and the theorem of Chevalley- Warning,” Ann. Sci. Ecole Norm. Sup. 20, 545–556 (1987). A. Adolphson and S. Sperber, “Exponential sums nondegenerate relative to a lattice,” Alg. Numb. Theory 8, 881–906 (2009). A. Adolphson and S. Sperber, “Hasse invariants and mod p solutions of A-hypergeometric systems,” J. Numb. Theory 142, 183–210 (2014). M. Ayad, K. Belghaba and O. Kihel, “On permutations binomials over finite fields,” Bull. Aust. Math. Soc. 89, 116–124 (2014). R. Blache, “Valuation of exponential sums and the generic first slope for Artin-Schreier curves,” J. Numb. Theory 132, 2336–2352 (2012). J. Chen and W. Cao, “Degree matrices and divisibility of exponential sums over finite fields,” Arch.Math. 94, 435–441 (2010). F. Castro, R. Figueroa and J. Ortiz-Ubarri, “Divisibility of exponential sums in one variable associated to binomials over Fp,” Contemporary Developments in Finite Fields and Applications, 11–21 (2016). F. Castro, R. Figueroa and P. Guan, “p-Adic valuation of exponential sums in one variable associated to binomials,” Unif. Distr. Theory 12, 37–53 (2107). F. Castro, R. Figueroa and L. Medina, “Exact divisibility of exponential sums and some consequences,” Contemp. Math. 579, 55–66 (2012). N. Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta-Functions, GTM58 (Springer-Verlag, New York, 1984). N. Koblitz, p-Adic Analysis: A Short Course on Recent Work, 46 (Cambridge University Press, 1980). X. Liu, “A problem related to the divisibility of exponential sums,” http://arxiv.org/pdf/1502.07281.pdf, (2015). O. Moreno and C. J. Moreno, “Improvements of the Chevalley-Warning and the Ax-Katz theorems,” Amer. J.Math. 117, 241–244 (1995). O. Moreno, K. Shum, F.N. Castro and P.V. Kumar, “Tight bounds forChevalley-Warning-Ax type estimates, with improved applications,” Proc. LondonMath. Soc. 88, 545–564 (2004). C. J. Moreno, Algebraic Curves Over Finite Fields (Cambridge University Press, 1991). G. Mullen and D. Panario, Handbook of Finite Fields, Discrete Mathematics and its Applications (CRC Press, 2013). S. Scholten and H. J. Zhu, “The first case ofWan’s conjecture,” Fin. Fields Their Appl. 8, 414–419 (2002). S. Sperber, “On the p-adic theory of exponential sums,” Amer. J.Math 108, 255–296 (1986).